Skip to main content

Advertisement

Log in

High-resolution cross-estimation channel modelling method and experimental results on broadband mobile communication in urban rich-scattering environment

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

For the IMT-advanced broadband mobile communication systems, an accurate broadband channel model is significant to the system design. However, the broadband channel impulse response (CIR) becomes sensitive to the complex propagation impacts of both specular path and diffuse dense path in a rich-scattering environment. We propose a cross-estimation (CE)-based channel modeling method by which the dense diffusion components can be identified independently and separated successfully from the overall CIR. As a result, the parameter estimation accuracy can be obviously improved, regardless of the complex diffusion impact in a rich scattering environment. Both theoretical derivation and experimental results are given to validate it based on the typical broadband channel measurement with 100 MHz bandwidth at 2.6 GHz in an urban hotspot scenario in Shanghai.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sarkar T K, Zhong J, Kyungjung K, et al. A survey of various propagation models for mobile communication. IEEE Antenn Propag Mag, 2003, 45(3): 51–82

    Article  Google Scholar 

  2. Molisch A F, Greenstein L J, Shafi M. Propagation issues for cognitive radio. Proc IEEE, 2009, 97(5): 787–804

    Article  Google Scholar 

  3. Molisch A F. Ultra-wide-band propagation channels. Proc IEEE, 2009, 97(2): 353–371

    Article  Google Scholar 

  4. Erceg V, Michelson D G, Ghassemzadeh S S, et al. A model for the multipath delay profile of fixed wireless channels. IEEE J Select Areas Commun, 1999, 17(3): 399–410

    Article  Google Scholar 

  5. Krim H, Viberg M. Two decades of array signal processing research. IEEE Signal Process Mag, 1996. 13(4): 67–94

    Article  Google Scholar 

  6. Schmidt R O. Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag, 1986, 34: 276–280

    Article  Google Scholar 

  7. Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans Acoust, Speech, Signal Process, 1989, 37(5): 984–999

    Article  Google Scholar 

  8. Haardt M, Nossek J. Unitary ESPRIT: How to obtain increased estimation accuracy with a reduced computational burden. IEEE Trans Signal Process, 1995, 43: 1232–1242

    Article  Google Scholar 

  9. Veen A, Vanderveen M, Paulraj A. Joint angle and delay estimation using shift-invariance properties. IEEE Signal Process Lett, 1997, 4: 142–145

    Article  Google Scholar 

  10. Zoltowski M, Haardt M, Mathews C. Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT. IEEE Trans Signal Process, 1996, 44: 316–328

    Article  Google Scholar 

  11. Feder M, Weinstein E. Parameter estimation of superimposed signals using the EM algorithm. IEEE Trans Acoust, Speech, Signal Process, 1988, 36: 477–489

    Article  MATH  Google Scholar 

  12. Fleury B H, Dahlhaus D, Heddergott R, et al. Wideband angle of arrival estimation using the SAGE algorithm. In: IEEE 4th Int Symp Spread Spectrum Techniques and Application, Mainz, Germany. 1996, 1: 79–85

    Google Scholar 

  13. Pedersen K, Fleury B, Mogensen P. High resolution of electromagnetic waves in time-varying radio channels. In: IEEE 8th Int Symp Personal, Indoor and Mobile Radio Communications, Helsinki, Finland. 1997, 2: 650–654

    Google Scholar 

  14. Pedersen K I, Mogensen P E, Fleury B H. A stochastic model of the temporal and azimuthal dispersion seen at the base station in outdoor propagation environments. IEEE Trans Veh Technol, 2002, 49(2): 437–447

    Article  Google Scholar 

  15. Cassioli D, Win M Z, Molisch A F. The ultra-wide bandwidth indoor channel: from statistical model to simulations. IEEE J Select Areas Commun, 2002, 20(6): 1247–1257

    Article  Google Scholar 

  16. Wax M, Kailath T. Detection of signals by information theoretic criteria. IEEE Trans Acoust, Speech, Signal Process, 1985, 33: 387–392

    Article  MathSciNet  Google Scholar 

  17. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control, 1974, 19(6): 716–723

    Article  MATH  MathSciNet  Google Scholar 

  18. Rissanen J. Modeling by shortest data description. Automatica, 1978, 14: 465–471

    Article  MATH  Google Scholar 

  19. Poor H V. An Introduction to Signal Detection and Estimation. New York: Springer-Verlag, 1988

    MATH  Google Scholar 

  20. Fleury B H, Yin X, Rohbrandt K G, et al. Performance of a high-resolution scheme for joint estimation of delay and bidirection dispersion in the radio channel. In: IEEE Vehicular Technology Conference, Birmingham, US. 2002, 1: 522–526

    Google Scholar 

  21. Fessler J A, Hero A O. Space-alternating generalized expectationmaximization algorithm. IEEE Trans Signal Process, 1994, 42: 2664–2677

    Article  Google Scholar 

  22. Wang P, Li Y Z, Chang R T, et al. Radio propagation characteristics measurement and modeling at urban scenario for 4G mobile communication (in Chinese). Chin J Radio Sci, 2008, 23(6): 1159–1163

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Additional information

Supported by the National High-Tech Research & Development Program of China (Grant No. 2009AA01152) and the National Major Program of China (Grant No. 2009ZX03007-003)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Li, Y., Sun, K. et al. High-resolution cross-estimation channel modelling method and experimental results on broadband mobile communication in urban rich-scattering environment. Sci. China Ser. F-Inf. Sci. 52, 2450–2458 (2009). https://doi.org/10.1007/s11432-009-0225-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-009-0225-3

Keywords