Skip to main content
Log in

Memetic computation based on regulation between neural and immune systems: the framework and a case study

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Lamarckian learning has been introduced into evolutionary computation to enhance the ability of local search. The relevant research topic, memetic computation, has received significant amount of interest. In this study, a novel memetic computational framework is proposed by simulating the integrated regulation between neural and immune systems. The Lamarckian learning strategy of simulating the unidirectional regulation of neural system on immune system is designed. Consequently, an immune memetic algorithm based on the Lamarckian learning is proposed for numerical optimization. The proposed algorithm combines the advantages of immune algorithms and mathematical programming, and performs well in both global and local search. The simulation results based on ten low-dimensional and ten high-dimensional benchmark problems show that the immune memetic algorithm outperforms the basic genetic algorithm-based memetic algorithm in solving most of the test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hart W E, Krasnogor N, Smith J E. Recent Advances in Memetic Algorithms. Berlin: Springer, 2005

    Book  MATH  Google Scholar 

  2. Dawkins R. The Selfish Gene. New York: Oxford Univ. Press, 1976

    Google Scholar 

  3. Radcliffe N J, Surry P D. Formal memetic algorithms. In: Fogarty T C, ed. Evolutionary Computing. Berlin: Springer, 1994. 1–16

    Google Scholar 

  4. Kazarlis S A, Papadakis S E, Theocharis J B, et al. Microgenetic algorithms as generalized hill-climbing operators for GA optimization. IEEE Trans Evolut Comput, 2001, 5: 204–217

    Article  Google Scholar 

  5. Ishibuchi H, Yoshida T, Murata T. Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans Evolut Comput, 2003, 7: 204–223

    Article  Google Scholar 

  6. Ong Y S, Keane A J. Meta-Lamarckian learning in memetic algorithms. IEEE Trans Evolut Comput, 2004, 8: 99–110

    Article  Google Scholar 

  7. Krasnogor N, Smith J. A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans Evolut Comput, 2005, 9: 474–488

    Article  Google Scholar 

  8. Zhu Z, Ong Y S, Dash M. Wrapper-filter feature selection algorithm using a memetic framework. IEEE Trans Syst Man Cybernet B, 2007, 37: 70–76

    Article  Google Scholar 

  9. Tan K C, Chiam S C, Mamun A A, et al. Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Europ J Oper Res, 2009, 197: 701–713

    Article  MATH  Google Scholar 

  10. Nguyen Q C, Ong Y S, Lim M H. A probabilistic memetic framework. IEEE Trans Evolut Comput, 2009, 13: 604–623

    Article  Google Scholar 

  11. Ang J H, Tan K C, Mamun A A. An evolutionary memetic algorithm for rule extraction. Exp Syst Appl, 2010, 37: 1302–1315

    Article  Google Scholar 

  12. Ong Y S, Lim M H, Chen X. Research frontier: towards memetic computing. IEEE Comput Intell Mag, 2010, 5: 24–31

    Article  Google Scholar 

  13. Jiao L C, Gong M G, Wang S, et al. Natural and remote sensing image segmentation using memetic computing. IEEE Comput Intell Mag, 2010, 5: 78–91

    Article  Google Scholar 

  14. de Castro L N, Timmis J. Artificial Immune Systems: A New Computational Intelligence Approach. Berlin, Heidelberg, New York: Springer-Verlag, 2002

    MATH  Google Scholar 

  15. Zhou J, Dasgupta D. Revisiting negative selection algorithms. Evolut Comput, 2007, 15: 223–251

    Article  Google Scholar 

  16. de Castro L N, Von Zuben F J. Learning and optimization using the clonal selection principle. IEEE Trans Evolut Comput, 2002, 6: 239–251

    Article  Google Scholar 

  17. Timmis J, Neal M. A resource limited artificial immune system for data analysis. Knowl Based Syst, 2001, 14: 121–130

    Article  Google Scholar 

  18. Aickelin U, Cayzer S. The danger theory and its application to artificial immune systems. In: Proc of the International Conference on Artificial Immune Systems, Canterbury, UK, 2002

  19. Jiao L C, Du H F, Liu F, et al. Immune Computation for Optimization, Learning and Recognition (in Chinese). Beijing: Science Press, 2006

    Google Scholar 

  20. Mo H W, Zuo X Q. Artificial Immune Systems (in Chinese). Beijing: Science Press, 2009

    Google Scholar 

  21. Timmis J. Artificial immune systems—today and tomorrow. Nat Comput, 2007, 6: 1–18

    Article  MATH  MathSciNet  Google Scholar 

  22. Gong M G, Du H F, Jiao L C. Optimal approximation of linear systems by artificial immune response. Sci China Ser F-Inf Sci, 2006, 49: 63–79

    Article  MATH  MathSciNet  Google Scholar 

  23. Gong M G, Jiao L C, Du H F, et al. Multiobjective immune algorithm with nondominated neighbor-based selection. Evolut Comput, 2008, 16: 225–255

    Article  Google Scholar 

  24. Gong M G, Jiao L C, Ma W P, et al. Multiobjective optimization using an immunodominance and clonal selection inspired algorithm. Sci China Ser F-Inf Sci, 2008, 51: 1064–1082

    Article  MATH  MathSciNet  Google Scholar 

  25. Gong M G, Jiao L C, Zhang X R. A population-based artificial immune system for numerical optimization. Neurocomputing, 2008, 72: 149–161

    Article  Google Scholar 

  26. Zuo X Q, Mo H W, Wu J P. A robust scheduling method based on a multi-objective immune algorithm. Inf Sci, 2009, 179: 3359–3369

    Article  Google Scholar 

  27. Gong M G, Jiao L C, Ma W P, et al. Intelligent multi-user detection using an artificial immune system. Sci China Ser F-Inf Sci, 2009, 52: 2342–2353

    Article  MATH  MathSciNet  Google Scholar 

  28. Gong M G, Jiao L C, Zhang L N. Baldwinian learning in clonal selection algorithm for optimization. Inf Sci, 2010, 180: 1218–1236

    Article  Google Scholar 

  29. Dustin M L, Colman D R. Neural and immunological synaptic relations. Science, 2002, 298: 785–789

    Article  Google Scholar 

  30. Gendrel M, Rapti G, Richmond J E, et al. A secreted complement-control-related protein ensures acetylcholine receptor clustering. Nature, 2009, 461: 992–996

    Article  Google Scholar 

  31. Styer K L, Singh V, Macosko E, et al. Innate immunity in Caenorhabditis elegans is regulated by neurons expressing NPR-1/GPCR. Science, 2008, 322: 460–464

    Article  Google Scholar 

  32. Powell M J D. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput J, 1964, 7: 303–307

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MaoGuo Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, M., Jiao, L., Liu, F. et al. Memetic computation based on regulation between neural and immune systems: the framework and a case study. Sci. China Inf. Sci. 53, 1519–1527 (2010). https://doi.org/10.1007/s11432-010-4019-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-4019-4

Keywords

Navigation