Skip to main content
Log in

Pair-wise error probability and its Chernoff upper bound for unitary space-time code

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Unitary space-time code is ideally suited for rapid fading scenarios as it can operate well without channel state information (CSI), which is of vital significance for improving the effectivity and reliability of wireless communication systems. Pair-wise error probability (PEP) is an important factor for studying the reliability of a communication system. However, the existing scheme only gives the final result of PEP and the corresponding Chernoff upper bound (CUB) is obtained through magnification, which is not of universal significance for this kind of problems. In this paper, we employ the log-likelihood ratio of probability density functions of the received signals conditioned on the two possibly transmitted signals and by virtue of moment generating function we give the details in deriving the final precise residue expression for PEP and its CUB. At last, we verify the above results by simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Telatar I E. Capacity of multi-antenna Gaussian channels. Technical Report, AT&T Bell Labs, 1995

  2. Foschini G J, Gans M J. On limits of wireless communication fading environment when using multiple antennas. Wirel Person Commun, 1998, 6: 311–335

    Article  Google Scholar 

  3. Marzetta T L, Hochwald B M. Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading. IEEE Trans Inf Theory, 1999, 45: 139–157

    Article  MATH  MathSciNet  Google Scholar 

  4. FRAMES Multiple access proposal for the UMTS radio interface-SMG2. Workshop on UMTS Radio Interface Technologies, 1996

  5. Hochwald B M, Marzetta T L. Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading. IEEE Trans Inf Theory, 2000, 46: 543–564

    Article  MATH  MathSciNet  Google Scholar 

  6. Hughes B L. Differential space-time modulation. IEEE Trans Inf Theory, 2000, 46: 2567–2578

    Article  MATH  Google Scholar 

  7. Hochwald B M, Sweldens W. Differential unitary space-time modulation. IEEE Trans Commun, 2000, 48: 2041–2052

    Article  Google Scholar 

  8. Wei R Y, Wu Y L. Unitary space-time trellis codes. In: Proc IEEE PIMRC 2003, Beijing, China, 2003. 1017–1021

  9. Hassibi B, Hochwald B M. Cayley differential unitary space-time codes. IEEE Trans Inf Theory, 2002, 48: 1485–1503

    Article  MATH  MathSciNet  Google Scholar 

  10. Jing Y, Hassibi B. Unitary space-time modulation via Cayley transform. IEEE Trans Signal Process, 2003, 51: 2891–2904

    Article  MathSciNet  Google Scholar 

  11. Oggier F, Hassibi B. Algebraic Cayley differential space-time codes. IEEE Trans Inf Theory, 2007, 53: 1911–1919

    Article  MATH  MathSciNet  Google Scholar 

  12. Foschini G J. Layered space-time architecture for wireless communication in a fading environment when using multiple antennas. Bell Labs Tech J, 1996, 1: 41–59

    Article  Google Scholar 

  13. Tarokh V, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communication: performance criterion and code construction. IEEE Trans Inf Theory, 1998, 44: 744–765

    Article  MATH  MathSciNet  Google Scholar 

  14. Alamouti S M. A simple transmit diversity technique for wireless communications. IEEE J Select Areas Commun, 1998, 16: 1451–1458

    Article  Google Scholar 

  15. Tarokh V, Jafarkhani H, Calderbank A R. Space-time block coding for wireless communication: performance results. IEEE J Select Areas Commun, 1999, 17: 451–460

    Article  Google Scholar 

  16. Jafarkhani H, Tarokh V. Multiple transmit antenna differential detection from generalized orthogonal designs. IEEE Trans Inf Theory, 2001, 47: 2626–2631

    Article  MATH  MathSciNet  Google Scholar 

  17. Li J, Yang Y H. The impact of spatial fading correlation on unitary space-time code. J Shanghai Jiaotong Univ, 2006, 40: 377–381

    MATH  Google Scholar 

  18. Zheng L, Tse D N C. Communication on the Grassmann manifold: A geometric approach to the noncoherent multiple-antenna channel. IEEE Trans Inf Theory, 2002, 48: 359–383

    Article  MATH  MathSciNet  Google Scholar 

  19. Cheng J, Chen M, Cheng S X. Space-time coding technique in wireless communication. J Circuits Syst, 2002, 7: 66–95

    Google Scholar 

  20. Li Y, Xie X Z, Wang X M. The summary on space-time codes. J Electr Inf Tech, 2002, 24: 1973–1979

    Google Scholar 

  21. Proakis J. Digital Communications. 3rd ed. New York: McGraw-Hill, 1995

    Google Scholar 

  22. Trees V. Detection, Estimation, and Modulation Theory-Part I. New York: Wiley, 1968

    MATH  Google Scholar 

  23. Zhang X D. Matrix Analysis and Application. Beijing: Tsinghua University Press, 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Liu, J., Xu, H. et al. Pair-wise error probability and its Chernoff upper bound for unitary space-time code. Sci. China Inf. Sci. 53, 1613–1621 (2010). https://doi.org/10.1007/s11432-010-4020-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-4020-y

Keywords

Navigation