Skip to main content
Log in

Key technologies of light field capture for 3D reconstruction in microscopic scene

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Light field capture for 3D reconstruction in microscopic scene is a very promising and useful technology, which can be extensively applied to life sciences, medicine, materials science, etc. This paper summarizes the key technologies in the evolution of microscopes for capturing 3D information, including wavefront-reconstruction, holography, fluorescence, tomography and so on. To give in-depth insights into them, detailed analyses and comparisons are provided. Finally, some future potential work in terms of light field capture and its application are discussed at length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang C, Chen T. A survey on image-based rendering-representation, sampling and compression. Signal Process Image Commun, 2004, 19: 1–28

    Article  MATH  Google Scholar 

  2. Kang S B. A survey of image-based rendering techniques. Cambridge Research Laboratory. Technical Report Series, 1997. 1–38

  3. Mcmillan L, Bishop G. Plenoptic modeling: An image based rendering system. In: Comput Graph (Proc. SIGGRAPH95), Los Angeles, 1995. 39–46

  4. Furukawa Y, Ponce J. Carved visual hulls for image-based modeling. Int J Comput Vision, 2009, 81: 53–67

    Article  Google Scholar 

  5. Oliveira M M. Image-based modeling and rendering techniques: A survey. Revisit Inf Theory Appl, 2002, 9: 37–66

    Google Scholar 

  6. Choudhury B, Chandran S. A survey of image-based relighting techniques. In: Proceedings of International Conference on Computer Graphics Theory and Applications. New York: ACM, 2006

    Google Scholar 

  7. Faraday M. Thoughts on Ray vibrations. Philosoph Mag, 1846, S.3, XXVIIIL: 188

  8. Gershun A. The Light Field. Moscow, 1936. (translated by Moon P, Timoshenko G). J Math Phys, 1939, XVIII, MIT: 51–151

  9. Adelson E H, Bergen J R. The plenoptic function and the elements of early vision. In: Landy M, Movshon J A, eds. Computation Models of Visual Processing. Cambridge: MIT Press, 1991

    Google Scholar 

  10. Levoy M, Hanrahan P. Light field rendering. In: Proc ACM SIGGRAPH. New York: ACM Press, 1996. 31–42

    Google Scholar 

  11. Levoy M, Ng R, Adams A et al. Light field microscopy. ACM Trans Graph, 2006, 25: 924–934

    Article  Google Scholar 

  12. Pluta M. Advanced Light Microscopy. Vol. 3. North Holland: Elsevier, 1993

    Google Scholar 

  13. Streibl N. Depth transfer by an imaging system. Opt Acta, 1984, 31: 1233–1241

    Google Scholar 

  14. Gabor D. A new microscopic principle. Nature, 1948, 161: 777–778

    Article  Google Scholar 

  15. Leith E, Upatnieks J. Reconstructed wavefronts and communication theory. J Opt Soc Am, 1962, 52: 1123–1130

    Article  Google Scholar 

  16. Leith E, Upatnieks J. Microscopy by wavefront reconstruction. J Opt Soc Am, 1965, 55: 569–570

    Article  Google Scholar 

  17. Ellis G W. Holomicrography: transformation of image during reconstruction a posteriori. Science, 1966, 154: 1195–1197

    Article  Google Scholar 

  18. Inoue S, Spring K R. Video Microscopy. 2nd ed. New York: Plenum Press, 1997

    Google Scholar 

  19. Sarder P, Nehorai A. Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Process Mag, 2006, 23: 32–45

    Article  Google Scholar 

  20. Minsky M. US Patent #3013467, Microscopy Apparatus, 1957

  21. Inoué S. Foundations of confocal scanned imaging in light microscopy. In: Pawley J B, ed. Handbook of Biological Confocal Microscopy. 3rd ed. New York: Springer Science + Business Media, 2006. 1–19

    Google Scholar 

  22. Minsky M. Memoir on inventing the confocal scanning microscope. Scanning, 1988, 10: 128–138

    Google Scholar 

  23. Chamgoulov R, Lane P, MacAulay C. Optical computed-tomography microscope using digital spatial light modulation. Proc SPIE, 2004, 5324: 182–190

    Article  Google Scholar 

  24. Kawata S, Nakamura O, Minami S. Optical microscope tomography. I. Support constraint. J Opt Soc Am, 1987, 4: 292–297

    Article  Google Scholar 

  25. Bonse U, Busch F. X-ray computed microtomography (µ CT) using synchrotron radiation (SR). Progr Biophys Mol Biol, 1996, 65: 133–169

    Article  Google Scholar 

  26. Graeff W, Engelke K. Microradiography and microtomography. Handbook on Synchrotron Radiation. North Holland: Elsevier Science, 1991. 361–405

    Google Scholar 

  27. Kinney J H, Nichols M C. X-ray tomographic microscopy (XTM) using synchrotron radiation. A. Rev Mater Sci, 1992, 22: 121–152

    Article  Google Scholar 

  28. Agard D A, Sedat J. Three-dimensional architecture of a polytene nucleus. Nature, 1983, 302: 676–681

    Article  Google Scholar 

  29. Agard D A, Sedat J W. Three dimensional analysis of biological specimens using image processing techniques. Proc Soc Photo-Opt Instr Eng, 1981, 264: 110–117

    Google Scholar 

  30. Agard D A. Optical sectioning microscopy: cellular architecture in three dimensions. Ann Rev Biophys Bioeng, 1984, 13: 191–219

    Article  Google Scholar 

  31. Shaw P J, Agard D A, Hiraoka Y, et al. Tilted view reconstruction in optical microscopy. Biophys J, 1989, 55: 101–110

    Article  Google Scholar 

  32. Lippmann M G. La photographie intéegrale. Comptes-rendus, Acad Sci, 1908, 146: 446–451

    Google Scholar 

  33. Lippmann M G. Épreuves réversibles donnant la sensation du relief. J Phys, 1908, 7: 821–825

    Google Scholar 

  34. Herbert E I. Optical properties of a Lippmann lenticulated sheet. J Opt Soc Am, 1931, 21: 171–176

    Article  Google Scholar 

  35. Sokolov A P. Autostereoscopy and Integral Photography by Professor Lippmann’s Method. Izd. MGU, Moscow State Univ. Press, 1911

  36. Dudnikov Y A. Autostereoscopy and integral photography. Opt Tech, 1970, 37: 422–426

    Google Scholar 

  37. Burckhardt C B. Optimum parameters and resolution limitation of integral photography. J Opt Soc Am, 1968, 58: 71–76

    Article  Google Scholar 

  38. Edward H, John A, Wang Y A. Single lens stereo with a plenoptic camera. IEEE Trans Patt Anal Mach Intell, 1992, 14: 99–106

    Article  Google Scholar 

  39. Javidi B, Jang J S. Improved depth of focus, resolution, and viewing angle integral imaging for 3D TV and display. The 16th Annual Meeting of the IEEE, 2003, 2: 726–727

    Google Scholar 

  40. Ng R, Levoy M, Brédif M, et al. Light field photography with a hand-held plenoptic camera. Stanford Tech Report CTSR. 2005-02

  41. Alexander E, Stefan W H. Fluorescence microscopy with super-resolved optical sections. Trend Cell Biol, 2005, 15: 207–215

    Article  Google Scholar 

  42. Susumu K, Kazuo S, Daizo S, et al. A double-axis microscope and its three-dimensional image position adjustment based on an optical marker method. Opt Commun, 1996, 129: 237–244

    Article  Google Scholar 

  43. Susumu K, Kazuo S, Shinro M, et al. Three-dimensional image reconstruction for biological micro-specimens using a double-axis fluorescence microscope. Opt Commun, 1997, 138: 21–26

    Article  Google Scholar 

  44. Jim S, Jan H, Ernst H K. Multiple imaging axis microscopy improves resolution for thick-sample applications. Opt Lett, 2003, 28: 1654–1656

    Article  Google Scholar 

  45. Tao R, Zhang F, Wang Y. Research progress on discretization of fractional fourier transform. Sci China Ser F-Inf Sci, 2008, 51: 859–880

    Article  MathSciNet  Google Scholar 

  46. Ng R. Fourier slice photography. ACM Trans Graph, 2005, 24: 735–744

    Article  Google Scholar 

  47. Michael W D, Mortimer A. Optical Microscopy. http://micro.magnet.fsu.edu/primer/techniques/index.html

  48. Hanser B M, Gustafsson M G L, Agard D A, et al. Phase-retrieved pupil functions in wide-field fluorescence microscopy. J Microsc, 2004, 216: 32–48

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QiongHai Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Ji, X. & Dai, Q. Key technologies of light field capture for 3D reconstruction in microscopic scene. Sci. China Inf. Sci. 53, 1917–1930 (2010). https://doi.org/10.1007/s11432-010-4045-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-4045-2

Keywords

Navigation