Skip to main content
Log in

Opitimization of tunneling carbon nanotube-FETs based on stair-case doping strategy

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Due to the fact that either holes or electrons can band-to-band-tunnel (BTBT) through channelsource/drain contacts, tunneling carbon nanotube field effect transistors (T-CNFETs) suffer from ambipolar transporting characteristic. To suppress such ambipolar conductance, a novel device design based on stair-case doping strategy of drain region is proposed first in this paper. The dependences of available ON-OFF current ratio, practical ON-OFF current ratio with certain gate bias range and the average sub-threshold swing on the doping level of drain region are studied. Simulation results show that such device design can not only increase the ON-OFF current ratio largely but also result in a clear decrease of sub-threshold swing. At the same time, however, such stair-case doping strategy would broaden the depletion region and result in an increase of device area cost. Particular attention should be paid to the choice of doping level of drain region to make a proper tradeoff between power, speed and area in application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martel R, Wong H S, Chan K, et al. Carbon nanotube field effect transistors for logica applications. In: Proceedings of IEDM’19. Piscataway: IEEE, 2001. 159–162

    Google Scholar 

  2. Javey A, Guo J, Wang Q, et al. Ballistic carbon nanotube field-effect transistors. Nature, 2003, 424: 654–657

    Article  Google Scholar 

  3. Appenzeller J, Knoch J, Derycke V, et al. Field-modulated carrier transport in carbon nanotube Transistors. Phys Rev Lett, 2002, 89: 1268011–1268014

    Article  Google Scholar 

  4. Sze S M. Physics of Semiconductor Devices. New York: Wiley, 1981

    Google Scholar 

  5. Radosavljevic M, Heinze S, Tersoff J, et al. Drain voltage scaling in carbon nanotube transistors. Appl Phys Lett, 2003, 83: 2435–2437

    Article  Google Scholar 

  6. Pourfath M, Ungersboeck E, Gehring A, et al. Numerical analysis of coaxial double gate Schottky barrier Carbon nanotube field effect transistors. J Comput Electr, 2005, 4: 75–78

    Article  Google Scholar 

  7. Chen B H, Wei J H, Lo P Y, et al. A carbon nanotube field effect transistor with tunable conduction-type by electrostatic effects. Solid-State Electr, 2006, 50: 1341–1348

    Article  Google Scholar 

  8. Lin Y M, Appenzeller J, Knoch J, et al. High-performance carbon nanotube field-effent transistor with tunable polarities. IEEE Trans Nanotech, 2005, 4: 481–489

    Article  Google Scholar 

  9. Chen J, Klinke C, Afzali A, et al. Self-aligned carbon nanotube transistors with charge transfer doping. Appl Phys Lett, 2005, 86: 3108–31083

    Google Scholar 

  10. Li J Q, Zhang Q. Simulation of ambipolar-to-unipolar conversion of carbon nanotube based field effect transistors. Nanotechnology, 2005, 16: 1415–1418

    Article  Google Scholar 

  11. Iman H, Mohammad H S, Zoheir K. Simulation of carbon nanotube FETs with linear doping profile near the source and drain contacts. Solid-State Electr, 2008, 52: 980–985

    Article  Google Scholar 

  12. Xiao D Y, Chen G, Lee R, et al. Planar split dual gate MOSFET. Sci China Ser F-Inf Sci, 2008, 51: 440–448

    Article  MATH  Google Scholar 

  13. Knoch J, Mantl S, Appenzeller J. Impact of the dimensionality on the performance of tunneling FETs: Bulk versus one-dimensional devices. Solid-State Electr, 2007, 51: 572–578

    Article  Google Scholar 

  14. Tans S J, Verschueren A R, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 1998, 393: 49–52

    Article  Google Scholar 

  15. Duclaux L. Review of the doping of carbon nanotubes (multiwalled and single-walled). Carbon, 2002, 40: 1751–1764

    Article  Google Scholar 

  16. Zhou C, Kong J, Yenilmez E, et al. Modulated chemical doping of individual carbon nanotubes. Science, 2000, 290: 1552–1555

    Article  Google Scholar 

  17. Ardakani A, Avouris P, Chen J, et al. US patent, 7253431, 2007-07-08

  18. Knoch J, Appenzeller J. Tunneling phenomena in carbon nanotube field-effect transistors. Phys Stat Sol, 2000, 205: 679–694

    Article  Google Scholar 

  19. Chen Z H, Farmer D, Xu S, et al. Externally assembled gate-all-around carbon nanotube field-effect transistor. IEEE Electr Device Lett, 2008, 29: 183–185

    Article  Google Scholar 

  20. Nosho Y, Ohno Y, Kishimoto S, et al. Fabrication and characterization of p-i-p top-gate carbon nanotube FETs. In: International Microprocess and Nanotechnology Conference, Kanagawa, 2006. 25–27

  21. Javey A R. Tu R, Farmer D. et al. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts, Nano Lett, 2005, 5: 345–348

    Article  Google Scholar 

  22. Venugopal R, Ren Z, Datta S, et al. Simulating quantum transport in nanoscale transistors: real versus mode-space approaches. J Appl Phys, 2002, 92: 3730–3739

    Article  Google Scholar 

  23. Fiori G, Iannaccone G, Klimeck G. Coupled mode space approach for the simulation of realistic carbon nanotube fieldeffect transistors. IEEE Trans Nanotech, 2007, 6: 475–480

    Article  Google Scholar 

  24. Guo J, Ali J, Dai H J, et al. Performance analysis and design optimization of near ballistic carbon nanotube field-effect transistors. In: Proceedings of IEDM’22, Piscataway: IEEE, 2004. 703–706

    Google Scholar 

  25. Appzenzeller J, Knoch J, Avouris P. Multimode transport in Schottky-barrier carbon-nanotube field-effect transistors. Phys Rev Lett, 2004, 92: 68021–68024

    Google Scholar 

  26. Huang R, Bu W H, Zhang X, et al. Quasi-two-dimensional subthreshold current model of deep submicrometer SOI drive-in gate controlled hybrid transistors with lateral non-uniform doping profile. Sci China Ser F-Inf Sci, 2001, 44: 60–67

    Article  Google Scholar 

  27. Muller R S, Kamins T I. Device Electronics for Integrated Circuits. New York: Wiley, 1986

    Google Scholar 

  28. Guo J, Datta S, Lundstrom M S, et al. Towards multiscale modeling of carbon nanotube transistors. Int J Mult Comp Eng, 2004, 2: 57–76

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiLiang Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, H., Jiang, J., Zhang, M. et al. Opitimization of tunneling carbon nanotube-FETs based on stair-case doping strategy. Sci. China Inf. Sci. 53, 2696–2704 (2010). https://doi.org/10.1007/s11432-010-4102-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-4102-x

Keywords

Navigation