Skip to main content
Log in

A GTD model and state space approach based method for extracting the UWB scattering center of moving target

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Movements of the scattering center on the condition of ultra-wideband (UWB) will impact the extraction of parameters. This paper presents an approach for extracting the moving targets’ UWB scattering center parameters based on the geometrical theory of diffraction (GTD) model and the state space approach. Firstly, the UWB GTD scattering model is transformed into state-space equations in order to estimate the range and range rate through the singular value decomposition. Secondly, the type parameter in the whole bandwidth is indicated dimension-reducedly by orthonormalized basis and estimated by traversal algorithm and minimumnorm algorithm. Finally, the intensity of scattering center is worked out based on the least square method. The paper provides the Cramer-Rao bound (CRB) for parameter estimation. The effectiveness of the approach is verified by computer simulation. The approach can estimate range, range rate, reflection intensity and type parameter simultaneously in order to improve the track of scattering centers and the target identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keller J B. Geometrical theory of diffraction. J Opt Soc Amer, 1962, 52: 116–130

    Article  MathSciNet  Google Scholar 

  2. Hurst M, Mittra R. Scattering center analysis via Prony’s method. IEEE Trans Antenn Propag, 1987, 35: 986–988

    Article  Google Scholar 

  3. Wang J, Wang F, Zhou J. Radar target scattering center extraction based on the full-polarization GTD model. Int Joint Confer Comput Sci Opt, 2009, 1: 882–885

    Google Scholar 

  4. Steedly W M, Moses R L. High resolution exponential modeling of fully polarized radar returns. IEEE Trans Aero Electr Syst, 1991, 27: 459–469

    Article  Google Scholar 

  5. Carriere R, Moses R L. High resolution radar target modeling using a modified Prony estimator. IEEE Trans Antenn Propag, 1992, 40: 13–18

    Article  Google Scholar 

  6. Fuller D F, Terzuoli A J, Collins P J, et al. 1-D feature extraction using a dispersive scattering center parametric model. IEEE Antenn Propag Socie Interna Sympos, 1998, 2: 1296–1299

    Google Scholar 

  7. Moghaddar A, Ogawa Y, Walton E K. Estimating the time-delay and frequency decay parameter of scattering components using a modified MUSIC algorithm. IEEE Trans Antenn Propag, 1994, 42: 1412–1418

    Article  Google Scholar 

  8. Potter L C, Chiang D M, Carriere R, et al. A GTD-based parametric model for radar scattering. IEEE Trans Antenn Propag, 1995, 43: 1058–1067

    Article  Google Scholar 

  9. Van Blaricum M, Mittra R. A technique for extracting the poles and residues of a system directly from its transient response. IEEE Trans Antenn Propag, 1975, 23: 777–781

    Article  Google Scholar 

  10. Mackay A J, McCowen A. An improved pencil-of-functions method and comparisons with traditional methods of pole extraction. IEEE Trans Antenn Propag, 1987, 35: 435–441

    Article  Google Scholar 

  11. Hua Y, Sarkar T K. Generalized pencil-of-functions method for extracting poles of an EM system from its transient response. IEEE Trans Antenn Propag, 1989, 37: 229–234

    Article  Google Scholar 

  12. Hua Y, Sarkar T K. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. IEEE Trans Acoust Speech Sig Process, 1990, 38: 814–824

    Article  MATH  MathSciNet  Google Scholar 

  13. McClure M, Qiu R C, Carin L. On the superresolution identification of observables from swept-frequency scattering data. IEEE Trans Antenn Propag, 1997, 45: 631–641

    Article  Google Scholar 

  14. Burrows M L. Two-dimensional ESPRIT with tracking for radar imaging and feature extraction. IEEE Trans Antenn Propag, 2004, 52: 524–532

    Article  Google Scholar 

  15. Yang J, Sarkar T K. Interpolation/extrapolation of radar cross section (RCS) data in the frequency domain using the Cauchy method. IEEE Trans Antenn Propag, 2007, 55: 2844–2851

    Article  Google Scholar 

  16. Bi Z, Li J, Liu Z S. Super resolution SAR imaging via parametric spectral estimation methods. IEEE Trans Aero Electr Syst, 1999, 35: 267–281

    Article  Google Scholar 

  17. Kung S Y, Arun K S, Rao D V. State-space and singular-value decomposition-based approximation methods for the harmonic retrieval problem. J Opt Soc Am, 1983, 73: 1799–1811

    Article  Google Scholar 

  18. Naishadham K, Piou J E. A robust state space model for the characterization of extended returns in radar target signatures. IEEE Trans Antenn Propag, 2008, 56: 1742–1751

    Article  Google Scholar 

  19. Piou J E. A state identification method for 1-D measurements with gaps. In: AIAA Guidance Navigation and Control Conf, San Francisco, CA, 2005

  20. Naishadham K, Piou J E. State-space spectral estimation of characteristic electromagnetic responses in wideband data. IEEE Antenn Wirel Propag Lett, 2005, 4: 406–409

    Article  Google Scholar 

  21. Piou J E, Cuomo K M, Mayhan J T. A state-space technique for ultrawide-bandwidth coherent processing. Tech. Rep. 1054, MIT Lincoln Laboratory, Jul. 1999

  22. Rao B D, Arun K S. Model based processing of signals: a state space approach. IEEE Proc, 1992, 80: 283–309

    Article  Google Scholar 

  23. David J H. State-space approaches to ultra-wideband Doppler processing. PhD thesis, Worcester Polytechnic Institute, 2007. 33–37

  24. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control, 1974, 19: 716–723

    Article  MATH  MathSciNet  Google Scholar 

  25. Wax M, Kailath T. Detection of signals by information theoretic criteria. IEEE Trans Acoust Speech Sig Process, 1985, 33: 387–392

    Article  MathSciNet  Google Scholar 

  26. Rissanen J. Modeling by shortest data description. Automatica, 1978, 14: 465–471

    Article  MATH  Google Scholar 

  27. Wax M, Ziskind I. Detection of the number of coherent signals by the MDL principle. IEEE Trans Acoust Speech Sig Process, 1989, 37: 1190–1196

    Article  Google Scholar 

  28. Van Trees H L. Optimum Array Processing, Part IV of Detection, Estimation, and Modulation Theory. New York: John Wiley & Sons, Inc., 2002. 925–928

    Google Scholar 

  29. Koets M A, Moses R L. Feature extraction using attributed scattering center models on SAR imagery. In: SPIE 3721, Orlando, FL, 1999

  30. Shi Z G, Zhou J X, Zhao H Z, et al. Study on joint Bayesian model selection and parameter estimation method of GTD model. Sci China Ser F-Inf Sci, 2007, 50: 261–272

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Wei, S., Sun, J. et al. A GTD model and state space approach based method for extracting the UWB scattering center of moving target. Sci. China Inf. Sci. 54, 182–196 (2011). https://doi.org/10.1007/s11432-010-4137-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-4137-z

Keywords

Navigation