Skip to main content
Log in

Self-healing routing: failure, modeling and analysis

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Network failures occur frequently, and self-healing ability of existing routing protocols cannot guarantee fast route convergence under these failures without impacting packet forwarding. During routing convergence, network routes may be incorrect and even routing black holes and loops occur, which will result in extensive packet loss and thus influence network performance. To solve this problem, several improved routing solutions have been proposed. In this paper, we propose the concept and model of self-healing routing and analyze the key problems in current intra-domain and inter-domain self-healing routing protocols after briefly reviewing the characteristics of network failures. We classify the different self-healing solutions into two categories based on their design principles: routing restoration and routing protection, and systematically analyze these different typical solutions. Finally, we discuss several key issues in self-healing routing and propose a hybrid protection and restoration based routing scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malkin G. RIP Version 2. RFC 1732, 1994

  2. Moy J. OSPF Version 2. RFC 2328, 1998

  3. Oran D. OSI IS-IS Intra-domain Routing Protocol. RFC 1142, 1990

  4. Rekhter Y, Li T. A Border Gateway Protocol 4 (BGP-4). RFC 1771, 1995

  5. Floyd S, Jacobson V. The synchronization of periodic routing messages. In: ACM SIGCOMM. New York: ACM, 1993. 33–44

    Google Scholar 

  6. Labovitz C, Ahuja A, Bose A, et al. Delayed Internet routing convergence. IEEE/ACM Trans Netw, 2001, 9: 293–306

    Article  Google Scholar 

  7. Sridharan A, Moon S B, Diot C. On the correlation between route dynamics and routing loops. In: ACM IMW. New York: ACM, 2003. 285–294

    Google Scholar 

  8. Wang F, Gao L, Wang J, et al. On understanding of transient interdomain routing failures. In: ICNP. Washington: IEEE, 2005. 30–39

    Google Scholar 

  9. Markopoulou A, Iannaccone G, Bhattacharyya S, et al. Characterization of failures in an IP backbone. In: INFOCOM. New York: IEEE, 2004 2307–2317

    Google Scholar 

  10. Iannaccone G, Chuah C, Mortier R, et al. Analysis of link failures in an IP backbone. In: ACM IMW. New York: ACM, 2002. 237–242

    Google Scholar 

  11. Wang L, Saranu M, Gottlieb J, et al. Understanding BGP session failures in a large ISP. In: INFOCOM. New York: IEEE, 2007. 348–356

    Google Scholar 

  12. Katz D, Ward D. Bidirectional forwarding detection. In: RFC 5880 Internet Engineering Task Force, 2010

  13. Teixeira R, Shaikh A, Griffin T, et al. Dynamics of hot-potato routing in IP networks. In: SIGMETRICS. New York: ACM, 2003. 307–319

    Google Scholar 

  14. Villamizar C., Chandra R., Govindan. R., BGP Route Flap Dampening. RFC 2439. 1998.

  15. Mao Z M, Govindan R, Varghese G, et al. Route flap damping exacerbates Internet routing convergence. In: ACM SIGCOMM. New York: ACM, 2002. 221–233

    Google Scholar 

  16. Fortz B, Thorup M. Optimizing OSPF/IS-IS weights in a changing world. IEEE J Select Areas Commun, 2002, 20: 756–767

    Article  Google Scholar 

  17. Afek Y, Bremler-Barr A, Schwarz S. Improved BGP convergence via ghost flushing. IEEE J Select Areas Commun, 2004, 22: 1933–1948

    Article  Google Scholar 

  18. Lakshminarayanan K, Caesar M, Rangan M, et al. Achieving convergence-free routing using failure-carrying packets. In: ACM SIGCOMM. New York: ACM, 2007. 241–252

    Google Scholar 

  19. Schollmeiers G, Charzinski J, Kirstadter A, et al. Improving the resilience in IP networks. In: HPSR 2003. New York: IEEE, 2003. 91–96

    Google Scholar 

  20. Gao L, Griffin T G, Rexford J. Inherently safe backup routing with BGP. In: INFOCOM 2001. New York: IEEE, 2001. 547–556

    Google Scholar 

  21. Xu W, Rexford J. MIRO: multi-path interdomain routing. In: SIGCOMM 2006. New York: ACM, 2006. 171–182

    Chapter  Google Scholar 

  22. Feamster N, Andersen D, Balakrishnan H, et al. Measuring the effects of Internet path faults on reactive routing. In: SIGMETRICS. New York: ACM, 2003. 126–137

    Google Scholar 

  23. Pei D, Azuma M, Massey D, et al. BGP-RCN: improving BGP convergence through root cause notification. Comput Netw, 2005, 48: 175–194

    Article  MATH  Google Scholar 

  24. Pei D, Zhao X L, Wang L, et al. Improving BGP convergence through consistency assertions. In: INFOCOM 2002, New York, 2002. 902–911

  25. Subramanian L, Caesar M, Ee C T, et al. HLP: a next generation interdomain routing protocol. In: SIGCOMM. New York: ACM, 2005. 13–24

    Google Scholar 

  26. Bates T, Chen E, Chandra R. BGP route reflection: an alternative to full mesh internal BGP (iBGP). RFC 4456. 2006

  27. Basu A, Ong C L, Rasala A, et al. Router oscillations in I-BGP with route reflection. In: SIGCOMM. New York: ACM, 2002. 235–247

    Google Scholar 

  28. Shand M, Bryant S. IP fast reroute framework. In: Internet Draft, draft-ietf-rtgwg-ipfrr-framework-08.txt, Internet Engineering Task Force, 2008

  29. Shand M, Bryant S. A framework for loop-free convergence. In: Internet Draft, draft-ietf-rtgwg-lf-conv-frmwk-02. txt, Internet Engineering Task Force, 2008

  30. Bryant S, Shand M, Previdi S. IP fast reroute using Notvia addresses. In: Internet Draft, draft-ietf-rtgwg-ipfrr-notviaaddresses-02. txt, Internet Engineering Task Force, 2008

  31. Nelakuditi S, Lee S, Yu Y, et al. Fast local rerouting for handling transient link failures. IEEE/ACM Trans Netw, 2007, 15: 359–372

    Article  Google Scholar 

  32. Bryant S, Filsfils C, Previdi S, et al. IP fast reroute using tunnels. In: Internet Draft, draft-bryant-ipfrr-tunnels-03. txt, Internet Engineering Task Force, 2007

  33. Atlas A, Zinin A. Basic specification for IP fast-reroute: loop-free alternates. In: Internet Draft, draft-ietf-rtgwg-ipfrrspec-base-12. txt, Internet Engineering Task Force, 2008

  34. Bonaventure O, Filsfils C, Francois P. Achieving Sub50 milliseconds recovery upon BGP peering link failures. IEEE/ACM Trans Netw, 2007, 15: 1123–1135

    Article  Google Scholar 

  35. Li Q, Xu M, Pan L, et al. A study of path protection in self-healing routing. In: IFIP Networking. Berlin: Springer-Verlag, 2008. 554–561

    Google Scholar 

  36. Li Q, Xu M, Wu J, et al. Achieving unified protection for IP routing. In: IEEE ICCCN 2010, New York, 2010. 1–6

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to MingWei Xu or Qi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, M., Li, Q., Yang, Y. et al. Self-healing routing: failure, modeling and analysis. Sci. China Inf. Sci. 54, 609–622 (2011). https://doi.org/10.1007/s11432-010-4177-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-4177-4

Keywords

Navigation