Abstract
By analysis of the basic properties of entanglement swapping of high-dimensional Bell states, a universal and general deterministic secure quantum communication (DSQC) protocol is proposed, in which unitary operation is not required. By making use of the results of high-dimensional Bell measurement, the sender and the receiver can encode and decode the message respectively by performing the modular addition and subtraction. Two mutually complementary bases are constructed; and according to the property of mutual complement, a method for checking security of the high-dimensional quantum channel is put forward. Some common attack strategies are analyzed, and the corresponding error rates are calculated. Then the upper bound of the threshold of error rate is deduced.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems & Signal Processing. Bangalore, 1984. 175–179
Gisin N, Ribordy G G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195
Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302
Deng F G, Long G L. Controlled order rearrangement encryption for quantum key distribution. Phys Rev A, 2003, 68: 042315
Long G L, Deng F G, Wang C, et al. Quantum secure direct communication and deterministic secure quantum communication. Front Phys China, 2007, 2: 251–272
Boströrm K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902
Wójcik A. Eavesdropping on the “ping-pong” quantum communication protocol. Phys Rev Lett, 2003, 90: 157901
Zhang Z J, Li Y, Man Z X. Improved Wójcik’s eavesdropping attack on ping-pong protocol without eavesdroppinginduced channel loss. Phys Lett A, 2005, 341: 385–389
Cai Q Y. The “ping-pong” protocol can be attacked without eavesdropping. Phys Rev Lett, 2003, 91: 109801
Cai Q Y. Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A, 2006, 351: 23–25
Deng F G, Li X H, Li C Y, et al. Eavesdropping on the “ping-pong” quantum communication protocol freely in a noise channel. Chinese Phys, 2007, 16: 277–281
Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68: 042317
Cai Q Y, Li B W. Improving the capacity of the Boström-Felbinger protocol. Phys Rev A, 2004, 69: 054301
Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 052319
Lucamarini M, Mancini S. Secure deterministic communication without entanglement. Phys Rev Lett, 2005, 94: 140501
Wang C, Deng F G, Long G L. Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt Commun, 2005, 253: 15–20
Li X H, Li C Y, Deng F G, et al. Quantum secure direct communication with quantum encryption based on pure entangled states. Chinese Phys, 2007, 16: 2149–2153
Lin S, Wen Q Y, Gao F, et al. Quantum secure direct communication with χ-type entangled states. Phys Rev A, 2008, 78: 064304
Yi X J, Nie Y Y, Zhou N R, et al. Secure direct communication based on non-orthogonal entangled pairs and local measurement. Int J Theor Phys, 2008, 47: 3401–3407
Chamoli A, Bhandari C M. Secure direct communication based on ping-pong protocol. Quantum Inf Process, 2009, 8: 347–356
Dong L, Dong H K, Xiu X M, et al. Quantum secure direct communication using a six-qubit maximally entangled state with dense coding. Int J Quantum Inf, 2009, 7: 645–651
Qin S J, Wen Q Y, Meng L M, et al. Quantum secure direct communication over the collective amplitude damping channel. Sci China Ser G-Phys Mech Astron, 2009, 52: 1208–1212
Zhang X L, Zhang Y X, Wei H. Quantum secure direct communication with Greenberger-Horne-Zeilinger-type state (GHZ state) over noisy channels. Chinese Phys B, 2009, 18: 435–439
Cao W F, Yang Y G, Wen Q Y. Quantum secure direct communication with cluster states. Sci China Phys Mech Astron, 2010, 53: 1271–1275
Wang C, Hao L, Song S Y, et al. Quantum direct communication based on quantum search algorithm. Int J Quantum Inf, 2010, 8: 443–450
Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305
Shimizu K, Imoto N. Communication channels secured from eavesdropping via transmission of photonic Bell states. Phys Rev A, 1999, 60: 157–166
Beige A, Englert B G, Kurtsiefer C, et al. Secure communication with a publicly known key. Acta Phys Pol A, 2002, 101: 357–368
Yan F L, Zhang X Q. A scheme for secure direct communication using EPR pairs and teleportation. Eur Phys J B, 2004, 41: 75–78
Wang J, Zhang Q, Tang C J. Quantum secure direct communication based on order rearrangement of single photons. Phys Lett A, 2006, 358: 256–258
Zhu A D, Xia Y, Fan Q B, et al. Secure direct communication based on secret transmitting order of particles. Phys Rev A, 2006, 73: 022338
Yuan H, Song J, He Q, et al. Robust quantum secure direct communication and deterministic secure quantum commu nication over collective dephasing noisy channel. Commun Theor Phys, 2008, 50: 627–632
Gao G. Efficient quantum secure communication protocol by rearranging particle orders. Commun Theor Phys, 2009, 52: 845–847
Gu B, Pei S X, Song B, et al. Deterministic secure quantum communication over a collective-noise channel. Sci China Ser G-Phys Mech Astron, 2009, 52: 1913–1918
Yuan H, Song J, Hu X Y, et al. An efficient deterministic secure quantum communication scheme with cluster state. Int J Quantum Inf, 2009, 7: 689–696
Liu W J, Chen H W, Ma T H, et al. An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication. Chinese Phys B, 2009, 18: 4105–4109
Li X H, Deng F G, Li C Y, et al. Deterministic secure quantum communication without maximally entangled states. J Korean Phys Soc, 2006, 49: 1354–1359
Żukowski M, Zeilinger A, Horne M A, et al. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys Rev Lett, 1993, 71: 4287–4290
Pan J W, Bouwmeester D, Weinfurter H, et al. Experimental entanglement swapping: entangling photons that never interacted. Phys Rev Lett, 1998, 80: 3891–3894
Gao T, Yan F L, Wang Z X. Deterministic secure direct communication using GHZ states and swapping quantum entanglement. J Phys A: Math Gen, 2005, 38: 5761–5770
Man Z X, Zhang Z J, Li Y. Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chinese Phys Lett, 2005, 22: 18–21
Xiu X M, Dong H K, Dong L, et al. Deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping. Opt Commun, 2009, 282: 2457–2459
Zhan Y B, Zhang L L, Zhang Q Y. Quantum secure direct communication by entangled qutrits and entanglement swapping. Opt Commun, 2009, 282: 4633–4636
Qin S J, Gao F, Wen Q Y, et al. Improving the quantum secure direct communication by entangled qutrits and entanglement swapping against intercept-and-resend attack. Opt Commun, 2010, 283: 1566–1568
Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Beijing: Higher Education Press, 2003. 216–247
Bechmann-Pasquinucci H, Tittel W. Quantum cryptography using larger alphabets. Phys Rev A, 2000, 6106: 062308
Bužek V, Hillery M. Universal optimal cloning of arbitrary quantum states: from qubits to quantum registers. Phys Rev Lett, 1998, 81: 5003–5006
Alber G, Delgado A, Gisin N, et al. Efficient bipartite quantum state purification in arbitrary dimensional Hilbert spaces. J Phys A: Math Gen, 2001, 34: 8821–8833
Bennett C H, Brassard G, Mermin N D. Quantum cryptography without Bell’s theorem. Phys Rev Lett, 1992, 68: 557–559
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Liu, Z., Chen, H., Liu, W. et al. Deterministic secure quantum communication without unitary operation based on high-dimensional entanglement swapping. Sci. China Inf. Sci. 55, 360–367 (2012). https://doi.org/10.1007/s11432-011-4371-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11432-011-4371-z