Skip to main content
Log in

Weak key analysis for chaotic cipher based on randomness properties

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Weak key analysis is a key issue in the design of chaotic ciphers. While most of the existing research focusing on the degradation of the chaotic sequences which causes weak keys, we point out that the parameters for which the chaotic sequences do not degrade are still possible to be weak keys. In this paper, we propose a new approach based on the rigorous statistical test to improve the weak key analysis. The weak keys of a specific chaotic cipher are investigated by using our method and a large number of new weak keys are detected. These results verify that our method is more effective. On the other hand, although statistical tests are now widely adopted to test the chaos-based bit sequences, there are few reports of analysis results on the weak keys or weak sequences of chaotic cipher. Thus our work may be helpful for current research on statistical tests of chaotic cipher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kocarev L. Chaos-based cryptography: a brief overview. IEEE Circ Syst Mag, 2001, 1: 6–21

    Article  Google Scholar 

  2. Zhang Y W, Wang Y M, Shen X B. Chaos-based image encryption algorithm using alternate structure. Sci China Ser F-Inf Sci, 2007, 50: 334–341

    Article  MathSciNet  MATH  Google Scholar 

  3. Alvarez G, Li S. Some basic cryptographic requirements for chaos-based cryptosystems. Int J Bifurcat Chaos, 2006, 16: 2129–2151

    Article  MathSciNet  MATH  Google Scholar 

  4. Biham E. Cryptanalysis of the chaotic-map cryptosystem suggested at EuroCrypt’91. In: Advances in Cryptology — EuroCrypt’91. Berlin: Springer, 1991. 532–534

    Google Scholar 

  5. Alvarez G, Montoya F, Romera M, et al. Cryptanalysis of a discrete chaotic cryptosystem using external key. Phys Lett A, 2003, 319: 334–339

    Article  MathSciNet  MATH  Google Scholar 

  6. Skrobek A. Cryptanalysis of chaotic stream cipher. Phys Lett A, 2007, 363: 84–90

    Article  Google Scholar 

  7. Li S, Alvarez G, Chen G, et al. Breaking a chaos-noise-based secure communication scheme. Chaos, 2005, 15: 013703

    Article  Google Scholar 

  8. Li C, Li S, Alvarez G, et al. Cryptanalysis of a chaotic block cipher with external key and its improved version. Chaos Soliton Fract, 2008, 37: 299–307

    Article  MathSciNet  MATH  Google Scholar 

  9. Schneier B. Applied Cryptography: Protocols, Algorithms, and Source Code in C. 2nd ed. Brisbane: John Wiley and Sons, 1996. 280–282

    MATH  Google Scholar 

  10. Robinson R C. An introduction to Dynamical Systems: Continuous and Discrete. New Jersey: Pearson Prentice Hall, 2004. 303–366

    MATH  Google Scholar 

  11. Tang K W, Tang K S, Man K F. A chaos-based pseudo-random number generator and its application in voice communications. Int J Bifurcat Chaos, 2007, 17: 923–933

    Article  MATH  Google Scholar 

  12. Li C, Li S, Alvarez G, et al. Cryptanalysis of two chaotic encryption schemes based on circular bit shift and XOR operations. Phys Lett A, 2007, 369: 23–30

    Article  MATH  Google Scholar 

  13. Lian S, Sun J, Wang J, et al. A chaotic stream cipher and the usage in video protection. Chaos Soliton Fract, 2007, 34: 851–859

    Article  MathSciNet  MATH  Google Scholar 

  14. Li P, Li Z, Halang W A, et al. Analysis of a multiple-output pseudo-random-bit generator based on a spatiotemporal chaotic system. Int J Bifurcat Chaos, 2006, 16: 2949–2963

    Article  Google Scholar 

  15. Xiang T, Liao X, Tang G, et al. A novel block cryptosystem based on iterating a chaotic map. Phys Lett A, 2006, 349: 109–115

    Article  MATH  Google Scholar 

  16. Li P, Li Z, Halang W A, et al. A multiple pseudorandom-bit generator based on a spatiotemporal chaotic map. Phys Lett A, 2006, 349: 467–473

    Article  Google Scholar 

  17. National Institute of Standards and Technology (NIST). Security Requirements for Cryptographic Modules. Federal Information Processing Standards Publication 140-2. 2001

  18. Patidar V, Sud K K, Pareek N K. A pseudo random bit generator based on chaotic logistic map and its statistical testing. Informatica, 2009, 33: 441–452

    MathSciNet  MATH  Google Scholar 

  19. Soto J. Randomness Testing of the AES Candidate Algorithms. NIST Interagency Reports 6390. 1999

  20. Soto J, Bassham L. Randomness Testing of the Advanced Encryption Standard Finalist Candidates. NIST Interagency Reports 6483. 2000

  21. Turan M S, Doganaksoy A, Calik C. Detailed Statistical Analysis of Synchronous Stream Ciphers. eSTREAM report 2006/043. 2006

  22. Rukhin A, Soto J, Nechvatal J, et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. NIST Special Publication 800-22. 2001

  23. Li S. When chaos meets computers. arXiv: nlin.CD/0405038. 2004

  24. Li S, Chen G, Mou X. On the dynamical degradation of digital piecewise linear chaotic maps. Int J Bifurcat Chaos, 2005, 15: 3119–3151

    Article  MathSciNet  MATH  Google Scholar 

  25. Sang T, Wang R, Yan Y. Perturbance-based algorithm to expand cycle length of chaotic key stream. Electron Lett, 1998, 34: 873–877

    Article  Google Scholar 

  26. Park S K, Miller K W. Random number generators: good ones are hard to find. Commun ACM, 1988, 31: 1192–1201

    Article  MathSciNet  Google Scholar 

  27. Kohda T, Tsuneda A. Statistics of chaotic binary sequences. IEEE Trans Inform Theory, 1997, 43: 104–112

    Article  MathSciNet  MATH  Google Scholar 

  28. Kohda T. Information sources using chaotic dynamics. Proc IEEE, 2002, 90: 641–661

    Article  Google Scholar 

  29. Tsuneda A. Design of binary sequences with tunable exponential autocorrelations and run statistics based on onedimensional chaotic maps. IEEE Trans Circ Syst-I, 2005, 52: 454–462

    Article  MathSciNet  Google Scholar 

  30. Addabbo T, Fort A, Papini D, et al. Invariant measures of tunable chaotic sources: robustness analysis and efficient estimation. IEEE Trans Circ Syst-I, 2009, 56: 806–819

    Article  MathSciNet  Google Scholar 

  31. Ergun S, Ozoguz S. Truly random number generators based on a non-autonomous chaotic oscillator. Int J Electron Commun, 2007, 61: 235–242

    Article  Google Scholar 

  32. Tomassini M, Sipper M, Perrenoud M. On the generation of high-quality random numbers by two-dimensional cellular automata. IEEE Trans Comput, 2000, 49: 1146–1151

    Article  Google Scholar 

  33. Addabbo T, Alioto M, Fort A, et al. A feedback strategy to improve the entropy of a chaos-based random bit generator. IEEE Trans Circ Syst-I, 2006, 53: 326–337

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, R., Wang, J., Yuan, J. et al. Weak key analysis for chaotic cipher based on randomness properties. Sci. China Inf. Sci. 55, 1162–1171 (2012). https://doi.org/10.1007/s11432-011-4401-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4401-x

Keywords

Navigation