Skip to main content
Log in

Terahertz radiation sources based on free electron lasers and their applications

  • Review
  • Special Focus
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The tunability, high power and flexible picoseconds-pulse time structure of terahertz (THz) radiation make the THz free-electron laser (FEL) a very attractive THz source of coherent radiation. This paper focuses on the development and perspectives of THz radiation sources based on the FEL. The principles of the low gain THz FEL oscillator, the SASE THz FEL amplifier and the supperradiant THz FEL are reviewed briefly, and the key technologies of THz FEL, such as injector, accelerator, undulator and optical cavity, are discussed, respectively. The current status of and future prospects for THz radiation sources based on the FEL are emphasized in this paper. Recent research and development have shown bright future in free-electron laser (FEL) THz radiation sources. The potential applications can be carried out in the field of imaging, material research, biology medicine, communication, diagnostics and many others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shumyatsk P, Alfano R R. Terahertz sources. J Biomed Opt, 2011, 16: 033001

    Article  Google Scholar 

  2. Gallerano G P, Biedron S. Overview of terahertz radiation sources. In: Proceeding of the 2004 FEL conference. Trieste, 2004. 216–221

  3. Krishnagopal S, Kumar V. Free electron laser. Radiat Phys Chem, 2004, 70: 559–569

    Article  Google Scholar 

  4. Committee on Free Electron Lasers and Other Advanced Coherent Light Sources, National Research Council. Free Electron Lasers and Other Advanced Source of Light: Scientific Research Opportunities. Washington: National Academy Press, 1994

    Google Scholar 

  5. Saldina E L, Schneidmillera E A, Yurkovb M V. The Physics of Free Electron Lasers-An Introduction. Phys Report, 260: 187–327

  6. Wiedemann H. Particle Accelerator Physics. Berlin: Springer, 1993

    Google Scholar 

  7. Rana S J. Free Electron Laser. Project report: Synchrotron radiation. 2010

  8. Kim K J, Sessler A. Free-Electron Lasers: present status and future prospects. Science, 1990, 250: 88–93

    Article  Google Scholar 

  9. Brau C A. Free-Electron Lasers. Oxford: Academic Press, 1990

    Google Scholar 

  10. Kim K J. Three-dimensional analysis of coherent amplification and self-amplified spontaneous emission in free-electron lasers. Phys Rev Lett, 1986, 57: 1871–1874

    Article  Google Scholar 

  11. Sung C, Tochitsky S Y, Ralph J E, et al. High-gain seeded FEL amplifier tunable in the terahertz range. In: Proceedings of the 27th International Free Electron Laser Conference, California, 2005. 87–90

  12. Tochitsky S Y, Sung C, Trubnick S E, et al. High-power tunable 0.5–3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines. J Opt Soc Am B, 2007, 24: 2509–2515

    Article  Google Scholar 

  13. Kii T, Higashimura K, Zen H, et al. Design study of THz seeded FEL using a photocathode RF gun and short period undulator. In: Proceeding of the 30th FEL Conference. Gyeongju, 2008. 196–199

  14. Seo Y H, Lee W H. Superradiant undulator radiation of periodic intense electron bunches in a cavity. IEEE Trans Plasma Sci, 2010, 38: 2016–2020

    Article  Google Scholar 

  15. Socol Y, Faingarsh A, Peleg S, et al. The ISRAELI EA-FEL upgrade toward long pulse operation for ultra-high resolution single pulse coherent spectroscopy. In: Proceedings of 27th FEL Conference, Stanford, 2005. 297–300

  16. Lidia S, Sannibale F, Staples J, et al. Development of a high-brightness VHF electron source. In: Proceeding of ERL07. Darebury, 2007

  17. Yang F J, Kan K, Kondoh T, et al. Femtosecond electron beam dynamics in photocathode accelerator. In: Proceedings of PAC07. New Mexico, 2007. THPMN039

  18. Dyunin E, Lurie Y, Pinhasi Y, et al. A new THz FEL development project. In: IEEE 25th Convention of Electrical and Electronics Engineers in Israel. Israel, 2008. 825–829

  19. Gavrilov N G, Knyazev B A, Kolobanov E I, et al. Status of the Novosibirsk high-power terahertz FEL. Nucl Instr Meth A, 2007, 575: 54–57

    Article  Google Scholar 

  20. Bakkera R J, van der Geera C A J. Commissioning the FELIX bunching system. Nucl Instr Meth A, 1991, 30: 199–202

    Google Scholar 

  21. Sprangle P, Penano J, Hafizi B, et al. High average current electron guns for high power free electron laser. Phys Rev ST Accel Beams, 2011, 14: 020702

    Article  Google Scholar 

  22. Janssen D, Buttig H, Evtushenko P, et al. Superconducting RF guns for FELs. Nucl Instr Meth A, 2004, 528: 305–311

    Article  Google Scholar 

  23. Hajima R. Overview of energy-recovery linacs. In: Asian Particle Accelerator Conference, Indore, 2007. MOYMA01

  24. Tecimer M, Brunel L C, van Tol J, et al. A design study of a FIR/THz FEL for high magnetic field research. In: Proceeding of FEL 2006, Bessy, 2006. TUPPH009

  25. Carr G L, Martin M C, McKinney W R, et al. High-power terahertz radiation from relativistic electron. Nature, 2000, 420: 153–156

    Article  Google Scholar 

  26. Minehara E J, Sugimoto M, Sawamura M, et al. Development of the JAERI FEL driven by a superconducting accelerator. In: Particale Accelerator Conference, Dallas, 1995. 159–161

  27. Lee B C, Jeong Y U, Park S H, et al. High-power infrared free electron laser driven by a 352 MHz superconducting accelerator with energy recovery. Nucl Instr Meth A, 2004, 528: 106–109

    Article  Google Scholar 

  28. Kubarev V V. Losses in optical resonator of Novosibirsk Terahertz FEL: Theory and experiment. In: Proceedings of FEL 2007. Novosibirsk, 2007. MOPP042

  29. Barnetta G A, Bensonb S V, Madey J M J, et al. Hole coupling experiments on the Mark III FEL. Nucl Instr Meth A, 1995, 358: 311–314

    Article  Google Scholar 

  30. Lehnert U, Michel P, Seidel W, et al. First experiences with the FIR-FEL at ELBE. In: Proceeding of FEL, Novosibirsk, 2007. MOPPH036

  31. Matveenko A N, Shevchenko O A, Tcheskidov V G, et al. Electron Outcoupling Scheme for the Novosibirsk FEL. In: Proceedings of FEL, Novosibirsk, 2007. 204–2206

  32. Neil G R, Behre C, Benson S V, et al. The JLab high power ERL light source. Nucl Instr Meth A, 2006, 557: 9–15

    Article  Google Scholar 

  33. Kim K J, Xie M. Stability and performance of CDRL-FEL. Nucl Instr Meth A, 1991, 304: 146–154

    Article  Google Scholar 

  34. Tecimer M, Oepts D, Wuensch R, et al. Study of partial-waveguide rf-linac FELs for intense THz pulse generation. Nucl Instr Meth A, 2004, 528: 139–145

    Article  Google Scholar 

  35. Doria A, Asgekar V B, Esposito E, et al. Long wavelength compact-FEL with controlled energy-phase correlation. Nucl Instr Meth A, 2001, 475: 296–302

    Article  Google Scholar 

  36. Tecimer M, Jiang H, Hallman S, et al. Variable height slot-outcoupling for the compact UH THz-FEL. Nucl Instr Meth A, 2004, 528: 146–151

    Article  Google Scholar 

  37. Oepts D, van der Meer A F G. Start-up and radiation charcteristics of the FELIX long wavelength FEL in the vicinity of a tuning gap. In: Proceedings of FEL2010, Malmo, 2010. 323–327

  38. Dattoli G, Doria A, Giannessi L, et al. Waveguide free electron laser: gain inhomogeneous broadening and saturation. Opt Comm, 1996, 123: 535–542

    Article  Google Scholar 

  39. Doria A, Gallerano G P, Renieri A. Kinematic and dynamic properties of a waveguide FEL. Opt Comm, 1991, 80: 417–424

    Article  Google Scholar 

  40. Bartolini R, Doria A, Gallerano G P, et al. Theoretical and experimental aspects of a waveguide FEL. Nucl Instr Meth A, 1991, 304: 417–420

    Article  Google Scholar 

  41. Ciocci F, Dattoli G, Giannessi L, et al. Inhomogeneous broadening effects in a waveguide free-eletron laser. IEEE J Quantum Electron, 1994, 20: 180–184

    Article  Google Scholar 

  42. Tecimer M. Numerical studies of (partial-) waveguide FELs. Nucl Instr Meth A, 2002, 483: 521–526

    Article  Google Scholar 

  43. Akberdin A A, Kazakevich G M, Kulipanov G N, et al. A compact far infrared free electron laser. Nucl Instr Meth A, 1998, 405: 195–199

    Article  Google Scholar 

  44. Jeong Y U, Kazakevich G M, Park S H, et al. High power table-top THz free electron laser and its application. Nucl Instr Meth A, 2007, 575: 58–59

    Article  Google Scholar 

  45. Huang Y C, Chiang A C, Lin Y Y. A high-gain, transform-limited far-infrared free-electron laser amplifier seeded by a THz single-frequency difference frequency generator. In: Proceedings of APAC. Gyeongiu, 2004. 264–266

  46. Abramovich A, Arensburg A, Chairman D, et al. First operation of the Israeli Tandem electrostatic accelerator freeelectron laser. Nucl Instr Meth A, 1998, 407: 16–20

    Article  Google Scholar 

  47. Socol Y, Faingarsh A, Peleg S, et al. The Israelia FEL upgrade toward long pulse operation for ultra-high resolution single pulse coherent spectroscopy. In: Proceeding of the 27th international FEL conference. Stanford, 2005. TUPP034

  48. Crosson E R, James G E, Schwettman H A, et al. Multi-user operation at an FEL facility. Nucl Instr Meth A, 1998, 144: 25–31

    Article  Google Scholar 

  49. Oepts D, van der Meer A F G, van Amersfoort P W. The free electron laser user facility FELIX. Infrar Phys Technol, 1995, 36: 297–308

    Article  Google Scholar 

  50. Kulipanov G N, Gavrilov N G, Knyazev B A, et al. Research highlights from the Novosibirsk 400W average power THz FEL. Terahertz Sci Technol, 2008, 1: 107–125

    Google Scholar 

  51. Prazeres R, Glotin F, Ortega J M, et al. Study of the “CLIO” FEL properties at long wavelengths. Nucl Instr Meth A, 2000, 445: 204–207

    Article  Google Scholar 

  52. Klopf J M, Greer A, Gubeli J, et al. The Jefferson Lab high power THz user facility. Nucl Instr Meth A, 2007, 582: 114–116

    Article  Google Scholar 

  53. Akberdin R R, Chesnokov E N, Dem’yanenko M A, et al. High power THz applications on the NovoFEL. In: 34th International Conference on IRMMW-THz. Busan, 2009. 1–3

  54. Gavrilov N G, Knyazev B A, Kolobanov E I, et al. Status of the Novosibirsk high-power terahertz FE. Nucl Instr Meth A, 2007, 575: 54–57

    Article  Google Scholar 

  55. Blau J, Bae Y H, Cohn K, et al. Free electron lasers in 2010. In: Proceedings of FEL2010. Malmo, 2010. MOPA05

  56. Cherkassky V S, Knyazev B A, Kubarev V V, et al. Imaging techniques for a high-power THz free electron laser. Nucl Instr Meth A, 2005, 543: 102–109

    Article  Google Scholar 

  57. Sun Y, Sy M Y, Wang YX, et al. A promising diagnostic method: terahertz pulsed imaging and spectroscopy. World J Radiol, 2011, 3: 55–65

    Article  Google Scholar 

  58. Hu Q. Terahertz quantum cascade lasers and real-time T-rays imaging at video rate. Terahertz Sci Technol, 2009, 2: 120–130

    Google Scholar 

  59. Knyazev B A, Kulipanov G N, Vinokurov N A. Novosibirsk terahertz free electron laser: instrumentation development and experimental Achievements. Meas Sci Technol, 2010, 21: 054017

    Article  Google Scholar 

  60. Cherkassky V S, Gerasimov V V, Ivanov G M, et al. Techniques for introscopy of condense matter in terahertz spectral region. Nucl Instr Meth A, 2007, 575: 63–67

    Article  Google Scholar 

  61. Kulipanov G N, Gavrilov N G, Knyazev B A, et al. Research highlights from the Novosibirsk 400W average power THz FEL. Terahertz Sci Technol, 2008, 1: 107–126

    Google Scholar 

  62. KARA M, Orbay M. An alternative communication source: free electron laser. Fizika, 2010, XVI: 68–70

    Google Scholar 

  63. Mcmillan R M. Terahertz imaging, millimeter-wave radar, advances in sensing with security applications. NATO Secur Sci Ser, 2006, 2: 243–268

    Article  MathSciNet  Google Scholar 

  64. Jeong Y U, Park S H, Lee B C, et al. Compact terahertz free electron laser as a users facility. In: Proceedings of APAC. Gyeonju, 2004. 759–561

  65. Jeong Y U, Kazakevitch G M, Cha H J, et al. Application of a wide-band compact FEL on THz imaging. Nucl Instr Meth A, 2005, 543: 90–95

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Tan.

Additional information

TAN Ping was born in 1974. She received the Ph.D. degree in electronic science and technology from the Huazhong University of Science& Technology, Wuhan in 2004. Currently, she is a lecturer of Huazhong University of Science & Technology. Her research interests include terahertz source based on FEL, terahertz application and computational electromagnetics.

XIONG YongQian was born in 1966. He received the Ph.D. degree in electric machinery from the Huazhong University of Science and Technology (HUST), Wuhan in 1995. Currently, he is a Professor at the HUST. His research interests include the FEL Terahertz source, Cyclotron, and New-type of electricmachines. Dr. Xiong is a member of China Electrotechnical Society and Chinese Nuclear Society.

HUANG Jiang was born in 1985. He received the Master degree from the Huazhong University of Science & Technology, Wuhan in 2009. Currently, he is a Ph.D. student in the field of College of Electrical & Electronic Engineering. His research interests include Numerical Analysis of Electromagnetic Field & Simulation of Beam Dynamics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, P., Huang, J., Liu, K. et al. Terahertz radiation sources based on free electron lasers and their applications. Sci. China Inf. Sci. 55, 1–15 (2012). https://doi.org/10.1007/s11432-011-4515-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4515-1

Keywords

Navigation