Skip to main content
Log in

Reliability-aware automatic composition approach for web services

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we study the reliability-aware synthesis problem for composing available services automatically and guaranteeing that the composed result satisfies the specification, such as temporal constraints of functionality and reliability, centered on a synthesis model for mediator of web services composition (CSM). This approach focuses on handling attributes and state relations, and permitting users and services to operate over them, i.e., read/write their data values and compare them according to a dense state order. We show that the reliability-aware synthesis problem for the specification is EXPTIME-complete and we give an exponential-time algorithm (CSM-NSA) which for a given formula ψ and a synthesis model, synthesizes available services in the library satisfying ψ over the synthesis model (if they exist) or responds with “not satisfiable” (otherwise). The specification ψ is a fragment of PCTL (probabilistic computation tree logic), obtained from “ordinary” CTL (computation tree logic) by replacing the EX, AX, EU and AU operation with their quantitative counterparts X >p, X =1, U >p, and U =1, respectively. As opposed to NSA, we provide a more effective algorithm to replace the NSA algorithm called CSM-HSA (heuristic synthesis algorithm). Though HSA is an incomplete algorithm, the answer is correct. The experiments show that the HSA algorithm solves the problem of reliability-aware service synthesis effectively and efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Curbera F, Duftler M, Khalaf R, et al. IEEE internet computing: spotlight-unraveling the web services web: an introduction to SOAP, WSDL, and UDDI. IEEE Distr Syst, 2002, Online 3(4)

  2. Andrews T, Curbera F. Business process execution language for web services 1.1. http://www.software.ibm.com/software/developer/library/ws-bpel.pdf

  3. Berardi D, Calvanese D, Giacomo G D, et al. Automate service composition based on behavioral descriptions. Int J Cooperat Inf Syst Num, 2005, 14: 333–376

    Article  Google Scholar 

  4. Fu X, Bultan T, Su J. Analysis of interacting BPEL web services. In: Feldman S I, Uretsky M, Najork M, et al., eds. Proceeding of the 13th International Conference on World Wide Web. New York: ACM Press, 2004. 621–630

    Google Scholar 

  5. Gerede C E, Hull R, Ibarra O H, et al. Automated composition of e-services: Lookaheads. In: Aiello M, Aoyama M, Curbera F, et al., eds. Proceeding of the 2nd International Conference on Service Oriented Computing. New York: ACM press, 2004. 252–262

    Chapter  Google Scholar 

  6. Aboteboul S, Vianu V, Fordham B S, et al. Verification of relational transducers for electronic commerce. JSCC J Num, 2000, 61: 236–269

    Google Scholar 

  7. Berardi D, M, Hacid S, Leger A, et al. On automating Web services discovery. VLDB J Num, 2004, 14: 84–96

    Google Scholar 

  8. Deutsch A, Sui L, Vianu V. Specification and verification of data-driven web applications. JCSS J Num, 2007, 73: 442–474

    MathSciNet  MATH  Google Scholar 

  9. Deutsch A, Sui L, Vianu V, et al. Verification of communicating data-driven web services. In: Vansummeren S, ed. Proceeding of the 25th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. New York: ACM Press, 2006. 90–99

    Google Scholar 

  10. Fan W, Geerts F, Gelade W, et al. Complexity and composition of synthesized Web services. In: Lenzerini M, Lembo D, eds. Proceeding of the 27th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. New York: ACM Press, 2008. 231–240

    Google Scholar 

  11. Spielmann M. Verfication of relational transducers for electronic commerce. JCSS J Num, 2003, 6691: 40–65

    MathSciNet  Google Scholar 

  12. Bhattacharya K, Gerede C E, Hull R, et al. Towards formal analysis of artifact-centric business process models. In: Alonso G, Dadam P, Rosemann M, eds. Proceeding of 5th International Conference on Business Process Management. Lect Notes in Comput Sci, vol. 1369. Berlin: Springer-Verlag, 2007. 288–304

    Google Scholar 

  13. Deutsch A, Hull R, Partizi F, et al. Automatic verification of data-centric business processes. In: Fagin R, ed. Proceeding of the 12th International Conference on Database Theory, vol. 361. New York: ACM Press, 2009. 252–267

    Chapter  Google Scholar 

  14. Fu X, Bultan T, Su J. Conversation protocols: a formalism for specification and verification of reactive electronic services. TCS J Num, 2004, 328: 19–37

    Article  MathSciNet  MATH  Google Scholar 

  15. Abiteboul S, Segoufin L, Vianu V. Static analysis of active XML systems. ACM Trans Database Syst Num, 2009, 34: 1–44

    Article  Google Scholar 

  16. Calinescu R, Kwiatkowska M. Using quantitative analysis to implement autonomic IT systems. In: Proceeding of the 31st International Conference on Software Engineering, Washington, DC: IEEE Press, 2009. 100–110

    Google Scholar 

  17. Masci P, Martinucci M, Giandomenico Di F. Towards automated dependability analysis of dynamically connected system. In: Proceedings of the 10th International Symposium on Autonomous Decentralized Systems. Washington DC: IEEE Press, 2011. 139–146

    Chapter  Google Scholar 

  18. Lustig Y, Vardi M Y. Synthesis from component libraries. In: de Alfaro L, ed. Proceedings of the 12th International Conference on Foundations of Software Science and Computational Structures. Lect Notes in Comput Sci, vol. 5504. Berlin: Springer-Verlag, 2009. 395–409

    Chapter  Google Scholar 

  19. Muscholl A, Walukiewicz I. A lower bound on Web services composition. CoRR J Num, abs/0804.3105, 2008

  20. Ciesinski F, Größer M. On probabilistic computation tree logic. In: Baier C, Haverkort B R, Hermanns H, et al., eds. Validation of Stochastic Systems. Lect Notes in Comput Sci, vol. 2925. Berlin: Springer-Verlag, 2004. 147–188

    Chapter  Google Scholar 

  21. Pnueli A. The temporal semantics of concurrent programs. Theor Comput Sci Num, 1981, 13: 45–60

    Article  MathSciNet  MATH  Google Scholar 

  22. Pnueli A, Rosner R. On the synthesis of a reactive module. In: Proceedings of the Sixteenth ACM Symposium on Principles of Programming Languages. New York: ACM Press, 1989. 179–190

    Chapter  Google Scholar 

  23. Church A. Logic, arithmetics, and automata. J Symb Logic Num, 1964, 29: 210

    Google Scholar 

  24. Rabin M O. Weakly definable relations and special automata. In: Bar-Hillel Y, ed. Proceedings of Symposium on Mathematical Logic and Foundations of Set Theory, North Holland, 1970. 1–23

  25. Buchi J R, Landweber H L. Solving sequential conditions by finite-state strategies. Trans AMS Num, 1969, 138: 295–311

    MathSciNet  MATH  Google Scholar 

  26. Lamport L. Sometimes is sometimes “not never” -on the temporal logic of programs. In: Proceedings of the 7th ACM Symposium on Principles of Programming Languages. New York: ACM Press, 1980. 174–185

    Google Scholar 

  27. Emerson E A, Halpern J Y. Sometimes and not never revisited: on branching versus linear time. J ACM Num, 1986, 33: 151–178

    Article  MathSciNet  MATH  Google Scholar 

  28. Emerson E A. Temporal and modal logic. In: Handbook of Theoretical Computer Science. Cambridge: MIT Press, 1990. 997–1072

    Google Scholar 

  29. IBM. The océano project. http://researchweb.waston.ibm.com/oceanoproject/

  30. Pistore M, Roberti P, Traverso P. Process-level composition of executable web services:“on-the-fly” versus “once-for-all” composition. In: European Semantic Web Conference. Lect Notes in Comput Sci, vol. 3532/2005. Berlin: Springer-Verlag, 2005. 123–136

    Google Scholar 

  31. Huai J P, Deng T, Du X Z, et al. AutoSyn: a new approach to automated synthesis of composite web services with correctness guarantee. Sci China Ser F-Inf Sci, 2009, 52: 1534–1549

    Article  MATH  Google Scholar 

  32. Brázdil T, Forejt V, Křetínský J, et al. The satisfiability problem for probabilistic CTL. In: Pfenning F, ed. Proceeding of 23rd Annual IEEE Symposium on Logic in Computer Science. New York: ACM Press, 2008. 391–402

    Chapter  Google Scholar 

  33. WorldWideWeb Consortium (W3C). Web Services Conversation Language (WSCL) 1.0, 2002. http://www.w3.org/TR/wscl10/

  34. World Wide Web Consortium (W3C). OWL-S: Semantic Markup for Web Services, 2004. http://www.w3.org/Submission/OWL-S/

  35. Bonatti P A, Festa P. On optimal service selection. In: Ellis A, Hagino T, eds. Proceedings of the 14th International Conference on World Wide Web. New York: ACM Press, 2005. 530–538

    Chapter  Google Scholar 

  36. Yu T, Lin K J. Service selection algorithms for web services with end-to-end QoS constraints. J Inf Syst E-Business Manage, 2005, 3: 103–126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mu Li or Bo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Li, B. & Huai, J. Reliability-aware automatic composition approach for web services. Sci. China Inf. Sci. 55, 921–937 (2012). https://doi.org/10.1007/s11432-011-4545-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4545-8

Keywords

Navigation