Skip to main content

Advertisement

Log in

Coherent processing for ISAR imaging with sparse apertures

  • Research Paper
  • Special Issue
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

To implement target detection, tracking and imaging in a multifunctional radar system, the wideband measurements for inverse synthetic aperture radar (ISAR) imaging are usually sparsely recorded. Considering the incoherence problem in such sparse-aperture ISAR (SA-ISAR) systems, we concentrate on the study of a coherent processing method in this work. Based on an all-pole model, the incoherence parameters between abutting sub-apertures can be effectively estimated. After coherence compensation, an optimization-based SAISAR imaging approach is provided from the view of statistics. Simulation and real data experiments validate the feasibility and effectiveness of the proposals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herd J, Duffy S, Carlson D, et al. Low cost multifunction phased array radar concept. In: 2010 IEEE International Symposium on Phased Array Systems and Technology (ARRAY), Lexington, MA, 2010. 457–460

  2. Quan Y H, Zhang L, Guo R, et al. Generating dense and super-resolution ISAR image by combining bandwidth extrapolation and compressive sensing. Sci China Inf Sci, 2011, 54: 2158–2169

    Article  MathSciNet  Google Scholar 

  3. Larsson E G, Stoica P, Li J. Amplitude spectrum estimation for two-dimensional gapped data. IEEE Trans Signal Process, 2002, 50: 1343–1353

    Article  Google Scholar 

  4. Zhang L, Xing M D, Qiu C W, et al. Achieving higher resolution ISAR imaging with limited pulses via compressed sampling. IEEE Geosci Rem Sens Lett, 2009, 6: 567–571

    Article  Google Scholar 

  5. Chen C C, Andrews H C. Target motion induced radar imaging. IEEE Trans Aerosp Electron Syst, 1980, 16: 2–14

    Article  Google Scholar 

  6. Zhu D Y, Wang L, Yu Y S, et al. Robust ISAR range alignment via minimizing the entropy of the average range profile. IEEE Geosci Rem Sens Lett, 2009, 6: 204–208

    Article  Google Scholar 

  7. Wang J, Liu X, Zhou Z. Minimum-entropy phase adjustment for ISAR. IEE Proc Radar Sonar Nav, 2004, 151: 203–209

    Article  Google Scholar 

  8. Yegulalp A F. Minimum entropy SAR autofocus. In: Adaptive Sensor Array Processing Workshorp. Lexington, MA: MIT Lincoln Laboratory, 1999. 25–36

    Google Scholar 

  9. Odendaal J W, Barnard E, Pistorius C W I. Two-dimensional superresolution radar imaging using the MUSIC algorithm. IEEE Trans Antenn Propag, 1994, 42: 1386–1391

    Article  Google Scholar 

  10. Kevin M C, Jean E P, Joseph T M, et al. Ultrawide-band coherent processing. IEEE Trans Antenn Propag, 1999, 47: 1094–1107

    Article  Google Scholar 

  11. Ding F, Ding J. Least-squares parameter estimation for systems with irregularly missing data. Int J Adapt Contr Signal Process, 2010, 24: 540–553

    MATH  Google Scholar 

  12. Lange K. Numerical Analysis for Statisticians. New York: Springer, 2010. 129–142

    MATH  Google Scholar 

  13. Zhang L X, Xu J D, Li P, et al. CFAR system simulation (in Chinese). Comput Sim, 2007, 24: 293–296

    Google Scholar 

  14. Babacan S D, Molina R, Aggelos K, et al. Bayesian compressive sensing using Laplace priors. IEEE Trans Image Process, 2010, 19: 53–63

    Article  MathSciNet  Google Scholar 

  15. Xia W, He Z S, Liao Y Y. On the maximum likelihood method for target localization using MIMO radars. Sci China Inf Sci, 2010, 53: 2127–2137

    Article  Google Scholar 

  16. Moore T G, Zuerndorfer B W, Burt E C. Enhanced imagery using spectral estimation based techniques. Lincoln Lab J, 1997, 10: 171–186

    Google Scholar 

  17. Fletcher R, Reeves C M. Function minimization by conjugate gradients. Comput J, 1964, 7: 149–154

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiaLian Sheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, J., Zhang, L., Xu, G. et al. Coherent processing for ISAR imaging with sparse apertures. Sci. China Inf. Sci. 55, 1898–1909 (2012). https://doi.org/10.1007/s11432-012-4606-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4606-7

Keywords