Abstract
To implement target detection, tracking and imaging in a multifunctional radar system, the wideband measurements for inverse synthetic aperture radar (ISAR) imaging are usually sparsely recorded. Considering the incoherence problem in such sparse-aperture ISAR (SA-ISAR) systems, we concentrate on the study of a coherent processing method in this work. Based on an all-pole model, the incoherence parameters between abutting sub-apertures can be effectively estimated. After coherence compensation, an optimization-based SAISAR imaging approach is provided from the view of statistics. Simulation and real data experiments validate the feasibility and effectiveness of the proposals.
Similar content being viewed by others
References
Herd J, Duffy S, Carlson D, et al. Low cost multifunction phased array radar concept. In: 2010 IEEE International Symposium on Phased Array Systems and Technology (ARRAY), Lexington, MA, 2010. 457–460
Quan Y H, Zhang L, Guo R, et al. Generating dense and super-resolution ISAR image by combining bandwidth extrapolation and compressive sensing. Sci China Inf Sci, 2011, 54: 2158–2169
Larsson E G, Stoica P, Li J. Amplitude spectrum estimation for two-dimensional gapped data. IEEE Trans Signal Process, 2002, 50: 1343–1353
Zhang L, Xing M D, Qiu C W, et al. Achieving higher resolution ISAR imaging with limited pulses via compressed sampling. IEEE Geosci Rem Sens Lett, 2009, 6: 567–571
Chen C C, Andrews H C. Target motion induced radar imaging. IEEE Trans Aerosp Electron Syst, 1980, 16: 2–14
Zhu D Y, Wang L, Yu Y S, et al. Robust ISAR range alignment via minimizing the entropy of the average range profile. IEEE Geosci Rem Sens Lett, 2009, 6: 204–208
Wang J, Liu X, Zhou Z. Minimum-entropy phase adjustment for ISAR. IEE Proc Radar Sonar Nav, 2004, 151: 203–209
Yegulalp A F. Minimum entropy SAR autofocus. In: Adaptive Sensor Array Processing Workshorp. Lexington, MA: MIT Lincoln Laboratory, 1999. 25–36
Odendaal J W, Barnard E, Pistorius C W I. Two-dimensional superresolution radar imaging using the MUSIC algorithm. IEEE Trans Antenn Propag, 1994, 42: 1386–1391
Kevin M C, Jean E P, Joseph T M, et al. Ultrawide-band coherent processing. IEEE Trans Antenn Propag, 1999, 47: 1094–1107
Ding F, Ding J. Least-squares parameter estimation for systems with irregularly missing data. Int J Adapt Contr Signal Process, 2010, 24: 540–553
Lange K. Numerical Analysis for Statisticians. New York: Springer, 2010. 129–142
Zhang L X, Xu J D, Li P, et al. CFAR system simulation (in Chinese). Comput Sim, 2007, 24: 293–296
Babacan S D, Molina R, Aggelos K, et al. Bayesian compressive sensing using Laplace priors. IEEE Trans Image Process, 2010, 19: 53–63
Xia W, He Z S, Liao Y Y. On the maximum likelihood method for target localization using MIMO radars. Sci China Inf Sci, 2010, 53: 2127–2137
Moore T G, Zuerndorfer B W, Burt E C. Enhanced imagery using spectral estimation based techniques. Lincoln Lab J, 1997, 10: 171–186
Fletcher R, Reeves C M. Function minimization by conjugate gradients. Comput J, 1964, 7: 149–154
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sheng, J., Zhang, L., Xu, G. et al. Coherent processing for ISAR imaging with sparse apertures. Sci. China Inf. Sci. 55, 1898–1909 (2012). https://doi.org/10.1007/s11432-012-4606-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11432-012-4606-7