Skip to main content
Log in

Compressed sensing SAR imaging based on sparse representation in fractional Fourier domain

  • Research Paper
  • Special Issue
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Compressed sensing (CS) is a new technique of utilizing a priori knowledge on sparsity of data in a certain domain for minimizing necessary number of measurements. Based on this idea, this paper proposes a novel synthetic aperture radar (SAR) imaging approach by exploiting sparseness of echo data in the fractional Fourier domain. The effectiveness and robustness of the approach are assessed by some numerical experiments under various noisy conditions and different measurement matrices. Experimental results have shown that, the obtained images by using the CS technique depend on measurement matrix and have higher output signal to noise ratio than traditional pulse compression technique. Finally simulated and real data are also processed and the achieved results show that the proposed approach is capable of reconstructing the image of targets and effectively suppressing noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soumekh M. Synthetic Aperture Radar Signal Processing with Matlab Algorithms. New York: Wiley, 1999

    Google Scholar 

  2. Cumming I G, Wong F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Norwood, MA: Artech House, 2005

    Google Scholar 

  3. Candès E J. Compressive sampling. Proc Int Congr Math, 2006, 3: 1433–1452

    Google Scholar 

  4. Candès E J, Wakin M B. An introduction to compressive sampling. IEEE Signal Process Mag, 2008, 25: 21–30

    Article  Google Scholar 

  5. Donoho D L. Compressed sensing. IEEE Trans Inf Theory, 2006, 52: 1289–1306

    Article  MathSciNet  Google Scholar 

  6. Baraniuk R, Steeghs P. Compressive radar imaging. In: IEEE Radar Conference, Boston, 2007. 128–133

  7. Gurbuz A C, McClellan J H, Scott W R. A compressive sensing data acquisition and imaging method for stepped frequency GPRs. IEEE Trans Signal Process, 2009, 57: 2640–2650

    Article  MathSciNet  Google Scholar 

  8. Gurbuz A C, McClellan J H, Scott W R. Compressive sensing for subsurface imaging using ground penetrating radar. Signal Process, 2009, 89: 1959–1972

    Article  MATH  Google Scholar 

  9. Varshney K R, Cetin M, Willsky A S. Sparse representation in structured dictionaries with application to synthetic aperture radar. IEEE Trans Signal Process, 2008, 56: 3548–3561

    Article  MathSciNet  Google Scholar 

  10. Stojanovic I, Karl W C, Cetin M. Compressed sensing of mono-static and multi-static SAR. Proc SPIE, 2009, 7337: 733705-1–733705-12

    Google Scholar 

  11. Wang H X, Quan Y H, Xing M D, et al. ISAR imaging via sparse probing frequencies. IEEE Geosci Rem Sens Lett, 2011, 8: 451–455

    Article  Google Scholar 

  12. Budillon A, Evangelista A, Schirinzi G. Three-dimensional SAR focusing from multipass signals using compressive sampling. IEEE Trans Geooci Rem Sens, 2011, 49: 488–499

    Article  Google Scholar 

  13. Nguyen L, Tran T D. Model-based sub-Nyquist sampling and reconstruction technique for ultra-wideband (UWB) radar. Proc SPIE, 2010, 7669: 76690H-1–76690H-9

    Google Scholar 

  14. Tao R, Deng B, Wang Y. Research progress of the fractional Fourier transform in signal processing. Sci China Ser F-Inf Sci, 2006, 49: 1–25

    Article  MathSciNet  MATH  Google Scholar 

  15. Bu H X, Bai X, Tao R. A novel algorithm for synthetic aperture radar imaging based on compressed sensing. In: IEEE 10th International Conference Signal Processing (ICSP), Beijing, 2010. 2210–2213

  16. Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans Inf Theory, 2006, 52: 6–18

    Article  MathSciNet  Google Scholar 

  17. Troop J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory, 2007, 53: 4655–4666

    Article  Google Scholar 

  18. Donoho D L, Tsaig Y, Drori I, et al. Sparse Solution of Underdetermined Linear Equations by Stagewise Orthogonal Matching Pursuit. Technical Report. 2006

  19. Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found Comput Math, 2009, 9: 317–334

    Article  MathSciNet  MATH  Google Scholar 

  20. Needell D, Troop J A. CoSaMP: Iterative signal recovery from noisy samples. Appl Comput Harmon Anal, 2008, 26: 301–321

    Article  Google Scholar 

  21. Blumensath T, Davies M E. Iterative hard thresholding for compressed sensing. Appl Comput Harmon Anal, 2009, 27: 265–274

    Article  MathSciNet  MATH  Google Scholar 

  22. Blumensath T, Yaghoobi M, Davies M E. Iterative hard thresholding and ol 0 regularisation. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Hawaii, 2007. 877–880

  23. Chen S S, Donoho D L, Sauners M A. Atomic decomposition by basis pursuit. SIAM J Sci Comput, 1999, 20: 33–61

    Article  MATH  Google Scholar 

  24. Candès E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Comm Pure Appl Math, 2006, 59: 1207–1223

    Article  MathSciNet  MATH  Google Scholar 

  25. Candès E J, Romberg J K, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory, 2006, 52: 489–509

    Article  MATH  Google Scholar 

  26. Candès E J, Tao T. Decoding by linear programming. IEEE Trans Inf Theory, 2005, 51: 4203–4215

    Article  Google Scholar 

  27. Tao R, Zhang F, Wang Y. Fractional power spectrum. IEEE Trans Signal Process, 2008, 56: 4199–4206

    Article  MathSciNet  Google Scholar 

  28. Tao R, Deng B, Zhang W Q, et al. Sampling and sampling rate conversion of band limited signals in the fractional Fourier transform domain. IEEE Trans Signal Process, 2008, 56: 158–171

    Article  MathSciNet  Google Scholar 

  29. Tao R, Li Y L, Wang Y. Short-time fractional Fourier transform and its applications. IEEE Trans Signal Process, 2010, 58: 2568–2580

    Article  MathSciNet  Google Scholar 

  30. Tao R, Li B Z, Wang Y, et al. On sampling of band-limited signals associated with the linear canonical transform. IEEE Trans Signal Process, 2008, 56: 5454–5464

    Article  MathSciNet  Google Scholar 

  31. Tao R, Meng X Y, Wang Y. Transform order division multiplexing. IEEE Trans Signal Process, 2011, 59: 598–609

    Article  MathSciNet  Google Scholar 

  32. Tao R, Li X M, Li Y L, et al. Time-delay estimation of chirp signals in the fractional Fourier domain. IEEE Trans Signal Process, 2009, 57: 2852–2855

    Article  MathSciNet  Google Scholar 

  33. Qi L, Tao R, Zhou S Y, et al. Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform. Sci China Ser F-Inf Sci, 2004, 47: 184–198

    Article  MathSciNet  MATH  Google Scholar 

  34. Pei S C, Ding J J. Simplified fractional Fourier transforms. J Opt Soc Am A, 2000, 17: 2355–2367

    Article  MathSciNet  Google Scholar 

  35. Carrara W G, Goodman R S, Majewski R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms. Norwood, MA: Artech House, 1995

    MATH  Google Scholar 

  36. Kirolos S, Laska J N, Wakin M B, et al. Analog to information conversion via random demodulation. In: Proc 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software, Dallas, TX, 2006. 71–74

  37. Laska J N, Kirolos S, Duarte M F, et al. Theory and implementation of an analog-to-information converter using random demodulation. In: IEEE International Symposium Circuits and Systems (ISCAS), New Orleans, 2007. 1959–1962

  38. Candès E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans Inf Theory, 2006, 52: 5406–5425

    Article  Google Scholar 

  39. Donoho D L. High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension. Discr Comput Geom, online 1st ed, December 22, 2005

  40. Donoho D L, Stodden V. Breakdown point of model selection when the number of variables exceeds the number of observations. In: International Joint Conference on Neural Networks (IJCNN), Vancouver, 2006. 1916–1921

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bu, H., Bai, X. & Tao, R. Compressed sensing SAR imaging based on sparse representation in fractional Fourier domain. Sci. China Inf. Sci. 55, 1789–1800 (2012). https://doi.org/10.1007/s11432-012-4607-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4607-6

Keywords

Navigation