Skip to main content
Log in

An efficient sparse channel estimator combining time-domain LS and iterative shrinkage for OFDM systems with IQ-imbalances

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A time-domain (TD) least square (LS) channel estimator is first proposed to estimate channel parameters of OFDM system with IQ imbalances at both transmitter and receiver. Then, an iterative shrinkage (IS) algorithm from compressed sensing is adopted to further improve the estimation performance by using the TD-LS solution as the initial value of IS in the case of sparse channel. Simulation shows that our algorithm combining TD-LS and IS performs better on bit error rate than the frequency-domain LS and matching pursuit in sparse Hilly Terrain channel when the same LS equalizer is adopted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bajwa W U, Haupt J, Sayeed A M, et al. Compressed channel sensing: a new approach to estimating sparse multipath channels. Proc IEEE, 2010, 98: 1058–1076

    Article  Google Scholar 

  2. ETSI ES 201 980. Digital Radio Mondiale (DRM). System Specification. V3.1.1. 2009

  3. Shu F, Lee J, Wu L N, et al. Time-frequency channel estimation for digital amplitude modulation broadcasting system based on OFDM. IEE Proc Commun, 2003, 150: 259–264

    Article  Google Scholar 

  4. Cotter S F, Rao B D. The adaptive matching pursuit algorithm for estimation and equalization of sparse time-varying channels. In: 34th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2000. 1772–1776

  5. Cotter S F, Rao B D. Sparse channel estimation via matching pursuit with application to equalization. IEEE Trans Commun, 2002, 50: 374–377

    Article  Google Scholar 

  6. Wang D M, Sheng B, Zhao J H, et al. Channel estimation algorithms for broadband MIMO-OFDM sparse channel. In: Proc IEEE Int Symp Personal Indoor Mobile Radio Communication, Beijing, 2003. 1929–1933

  7. Wu C J, Lin D W. A group matching pursuit algorithm for sparse channel estimation for OFDM transmission. In: Proc IEEE Int Conf Acoust Speech Signal Process, Toulouse, 2006. 429–432

  8. Kocic M, Brady D, Merriam S. Reduced-complexity RLS estimation for shallow-water channels. In: Proc Symp Autonom Underwater Veh Technol, Cambridge, MA, 1994. 165–170

  9. Raghavendra M R, Giridhar K. Improving channel estimation in OFDM systems for sparse multipath channels. IEEE Signal Process Lett, 2005, 12: 52–55

    Article  Google Scholar 

  10. Carbonelli C, Vedantam S, Mitra U. Sparse channel estimation with zero tap detection. IEEE Trans Wirel Commun, 2007, 6: 1743–1753

    Article  Google Scholar 

  11. Tauböck G, Hlawatsch F. A compressed sensing technique for OFDM channel estimation in mobile environments: exploiting channel sparsity for reducing pilot. In: International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas, 2008. 2885–2888

  12. Tauböck G, Hlawatsch F. Compressed Sensing based estimation of doubly selective channels using a sparsity-optimized basis expansion. In: European Signal Processing Conference (EUSIPCO), Lausanne, 2008. 25–29

  13. Haupt J, Bajwa W U, Raz G, et al. Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Trans Inform Theory, 2010, 56: 5862–5875

    Article  MathSciNet  Google Scholar 

  14. Berger C R, Zhou S L, Preisig J C, et al. Sparse channel estimation for multicarrier underwater acoustic communication: from subspace methods to compressed sensing. IEEE Trans Signal Process, 2010, 58: 1708–1721

    Article  MathSciNet  Google Scholar 

  15. Tarighat A, Sayed A H. Joint compensation of transmitter and receiver impairments in OFDM systems. IEEE Trans Wirel Commun, 2007, 6: 240–247

    Article  Google Scholar 

  16. Zhu H L, Wang J Z. Chunk-based resource allocation in OFDMA systems-part I: chunk allocation. IEEE Trans Commun, 2009, 57: 2734–2744

    Article  Google Scholar 

  17. Zhu H L, Wang J Z. Chunk-based resource allocation in OFDMA systems-part II: joint chunk, power and bit allocation. IEEE Trans Commun, 2012, 60: 499–509

    Article  Google Scholar 

  18. Shu F, Stevan B, Wang D M, et al. ML integer frequency offset estimation for OFDM systems with null subcarriers: estimation range and pilot design. Sci China Inf Sci, 2010, 53: 2567–2575

    Article  Google Scholar 

  19. Gao T, Zhou F, Li W, et al. A 6.2–9.5 GHz receiver for Wimedia MB-OFDM and China UWB standard. Sci China Inf Sci, 2011, 54: 407–418

    Article  Google Scholar 

  20. Chen Y F, Fan J H. A current-mode RF transmitter for 6–9 GHz MB-OFDM UWB application. Sci China Inf Sci, 2011, 54: 419–428

    Article  MathSciNet  Google Scholar 

  21. Zhang H, Dai X H, Pan D R. Linearly time-varying channel estimation and training power allocation for OFDM/MIMO systems using superimposed training. Sci China Inf Sci, 2011, 54: 1456–1470

    Article  Google Scholar 

  22. Zibulevky M, Elad M. L1–L2 optimization in signal and image processing. IEEE Signal Process Mag, 2010, 27: 76–82

    Article  Google Scholar 

  23. Bruckstein A M, Donoho D L, Elad M. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev, 2009, 51: 34–81

    Article  MathSciNet  MATH  Google Scholar 

  24. Elad M. Sparse and Redudant Representation: From Theory to Applications in Signal and Image Processing. Heidelberg: Springer, 2010

    Google Scholar 

  25. ETSI TR 125 943. Universal Mobile Telecommunications System (UMTS). Deployment aspects. 3GPP TR 25.943, Ver 5.1.0, Release 5. 2002-06

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Shu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shu, F., Zhao, J., You, X. et al. An efficient sparse channel estimator combining time-domain LS and iterative shrinkage for OFDM systems with IQ-imbalances. Sci. China Inf. Sci. 55, 2604–2610 (2012). https://doi.org/10.1007/s11432-012-4691-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4691-7

Keywords

Navigation