Skip to main content
Log in

Resource management in radio access and IP-based core networks for IMT Advanced and Beyond

  • Research Paper
  • Special Issue
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The increased capacity needs, primarily driven by content distribution, and the vision of Internet-of-Things with billions of connected devices pose radically new demands on future wireless and mobile systems. In general the increased diversity and scale result in complex resource management and optimization problems in both radio access networks and the wired core network infrastructure. We summarize results in this area from a collaborative Sino-Swedish project within IMT Advanced and Beyond, covering adaptive radio resource management, energy-aware routing, OpenFlow-based network virtualization, data center networking, and access network caching for TV on demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Viswanath P, Tse D N C, Laroia R. Opportunistic beamforming using dumb antennas. IEEE Trans Inf Theory, 2002, 48: 1277–1294

    Article  MathSciNet  MATH  Google Scholar 

  2. Hassibi B, Marzetta T L. Multiple-antennas and isotropically random unitary inputs: the received signal density in closed form. IEEE Trans Inf Theory, 2002, 48: 1473–1484

    Article  MathSciNet  MATH  Google Scholar 

  3. Sharif M, Hassibi B. On the capacity of MIMO broadcast channels with partial side information. IEEE Trans Inf Theory, 2005, 51: 506–522

    Article  MathSciNet  Google Scholar 

  4. Spencer Q H, Swindlehurst A L, Haardt M. Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels. IEEE Trans Signal Process, 2004, 52: 461–471

    Article  MathSciNet  Google Scholar 

  5. Lin S, Ho WWL, Liang Y C. Block-diagonal geometric mean decomposition (BD-GMD) for multiuser MIMO broadcast channels. In: The 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Helsiniki, 2006. 1–5

  6. Boccardi F, Huang H, Trivellato M. Multiuser eigenmode transmission for MIMO broadcast channels with limited feedback. In: IEEE 8th Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2007), Helsiniki, 2007. 1–5

  7. Tan L, Su G, Zhu G X, et al. Adaptive proportional fair scheduling based on opportunistic beamforming for MIMO systems. In: 5th International Conference on Wireless Communications, Networking and Mobile Computing, Beijing, 2009. 1–4

  8. Su G, Wang L, Tan L, et al. An efficient scheduling scheme based on MET for MIMO systems. Int J Wirel Mob Comput, in press

  9. Zhan Q, Zhu G X, Tan L, et al. A novel dynamic proportional fair scheduling based on block diagonal geometric mean decomposition. J Netw, 2011, 6: 71–79

    Google Scholar 

  10. Su G, Liu Y X, Tan L, et al. Analysis of adaptive proportional fair scheduling method on BDGMD scheme for MIMO systems. Int J Wirel Mob Comput, in press

  11. Vasic N, Kostić D. Energy-aware traffic engineering. In: 1st International Conference on Energy-Efficient Computing and Networking, Passau, 2010. 169–178

  12. Applegate D, Cohen E. Making intra-domain routing robust to changing and uncertain traffic demands: Understanding fundamental tradeoffs. In: ACM SIGCOMM, Karlsruhe, 2003. 313–324

  13. Zhang M, Yi C, Liu B, et al. GreenTE: Power-aware traffic engineering. In: IEEE ICNP, Kyoto, 2010. 21–30

  14. Moy J. OSPF version 2. IETF RFC 2328, 1998. Available: http://tools.ietf.org/html/rfc2328.txt

  15. Xu K, Liu H, Liu J, et al. One more weight is enough: Toward the optimal traffic engineering with OSPF. In: IEEE ICDCS, Minneapolis, 2011. 836–846

  16. Xu K, Liu H, Liu J, et al. LBMP: A logarithm-barrierbased multipath protocol for internet traffic management. IEEE Trans Parallel Distrib Syst, 2011, 22: 456–470

    Google Scholar 

  17. Zhang Y. Abilene TM. (2004-10-18). Available: http://www.cs.utexas.edu/yzhang/research/AbileneTM/

  18. Turner J S, Taylor D E. Diversifying the Internet. In: Global Telecommunications Conference, St. Louis, 2005. 755–760

  19. McKeown N, Anderson T, Balakrishnan H, et al. OpenFlow: Enabling Innovation in Campus Networks. SIGCOMM Comput Commun Rev, 2008, 38: 69–74

    Article  Google Scholar 

  20. Chowdhury N M M K, Boutaba R. Network Virtualization: State of the Art and Research Challenges. IEEE Commun Mag, 2009, 47: 20–26

    Article  Google Scholar 

  21. Szegedi P, Figuerola S, Campanella M, et al. With Evolution for Revolution: Managing FEDERICA for Future Internet Research. IEEE Commun Mag, 2009, 47: 34–39

    Article  Google Scholar 

  22. Turner J S. A proposed architecture for the GENI backbone platform. In: Proceedings of the 2006 ACM/IEEE symposium on Architecture for networking and communications systems, New York, 2006. 1–10

  23. Harai H. Designing new-generation network: Overview of AKARI architecture design. In: Asia Communications and Photonics Conference and Exhibition, Shanghai, 2009. 1–2

  24. Yap K K, Huang T Y, Dodson B, et al. Towards software-friendly networks. In: Proceedings of the 1st ACM Asia-Pacific Workshop on Systems, New York, 2010. 49–54

  25. Sherwood R, Chan M, Covington A, et al. Carving research slices out of your production networks with OpenFlow. SIGCOMM Comput Commun Rev, 2010, 40: 129–130

    Article  Google Scholar 

  26. Bianco A, Birke R, Giraudo L, et al. OpenFlow switching: data plane performance. In: IEEE International Conference on Communications (ICC), Cape Town, 2010. 1–5

  27. Naous J, Erickson D, Covington G A, et al. Implementing an OpenFlow switch on the NetFPGA platform. In: Proceedings of the 4th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, New York, 2009. 1–9

  28. Luo Y, Cascon P, Murray E, et al. Accelerating openflow switching with network processors. In: Proceedings of the 5th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, New York, 2009. 70–71

  29. Tanyingyong V, Hidell M, Sjödin P. Improving PC-based OpenFlow switching performance. In: Proceedings of the 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, New York, 2010. 1–13

  30. Tanyingyong V, Hidell M, Sjödin P. Offloading packet processing in a combined router/server. In: 7th Swedish National Computer Networking Workshop, Linköping, 2011. 34–37

  31. Tanyingyong V, Hidell M, Södin P. Using hardware classification to improve PC-based OpenFlow switching. In: IEEE 12th International Conference on High Performance Switching and Routing (HPSR), Cartagena, 2011. 215–221

  32. Tanyingyong V, Hidell M, Södin P. Improving performance in a combined router/server. In: IEEE 13th International Conference on High Performance Switching and Routing (HPSR), Belgrade, 2012. 52–58

  33. Guo C, Wu H, Tan K, et al. DCell: A scalable and fault-tolerant network structure for data centers. In: Proceedings of ACM SIGCOMM, Seattle, 2008. 75–86

  34. Al-Fares M, Loukissas A, Vahdat A. A scalable, commodity data center network architecture. In: Proceedings of ACM SIGCOMM, Seattle, 2008. 63–74

  35. Mysore R, Pamboris A, Farrington N, et al. PortLand: A scalable fault-tolerant layer 2 data center network fabric. In: Proceedings of ACM SIGCOMM, Barcelona, 2009. 39–50

  36. Greenberg A, Hamilton J, Jain N, et al. VL2: A scalable and flexible data center network. In: Proceedings of ACM SIGCOMM, Barcelona, 2009. 51–62

  37. Kandula S, Padhye J, Bahl P. Flyways to de-congest data center network. In: Proceedings of HotNets, New York City, 2009. 1–6

  38. Wang G, Andersen D, Kaminsky M, et al. c-Through: Part-time optics in data centers. In: Proceedings of ACM SIGCOMM, New Delhi, 2010. 327–338

  39. Li D, Guo C, Wu H, et al. Scalable and cost-effective interconnection of data center servers using dual server ports. IEEE/ACM Trans Netw, 2011, 19: 102–114

    Article  Google Scholar 

  40. Guo C, Lu G, Li D, et al. BCube: A high performance, server-centric network architecture for modular data centers. In: Proceedings of ACM SIGCOMM, Barcelona, 2009. 63–74

  41. Wu H, Lu G, Li D, et al. MDCube: A high performance network structure for modular data center interconnection. In: Procedings of ACM SIGCOMM CoNEXT, Barcelona, 2009. 126–138

  42. Greenberg A, Hamilton J, Maltz D, et al. The cost of a cloud: Research problems in data center networks. ACM SIGCOMM Comput Commun Rev, 2009, 39: 68–73

    Article  Google Scholar 

  43. Lu G, Guo C, Li Y, et al. ServerSwitch: A programmable and high performance platform for data center networks. In: Proceedings of NSDI, Boston, 2011. 15–28

  44. Wang J. A survey of web caching schemes for the Internet. ACM SIGCOMM Comput Commun Rev, 1999, 29: 36–46

    Article  Google Scholar 

  45. Liu J C, Xu J L. Proxy caching for media streaming over the Internet. IEEE Commun Mag, 2004, 42: 88–94

    Google Scholar 

  46. Borst S, Gupta V, Walid A. Distributed caching algorithms for content distribution networks. In: Proceedings of INFOCOM10, San Diego, 2010. 1–9

  47. Abrahamsson H, Börkman M. Simulation of IPTV caching strategies. In: Proceedings of SPECTS10, Ottawa, 2010. 187–193

  48. Abrahamsson H, Börkman M. Caching for IPTV distribution with time-shift. In: International Conference on Computing, Networking & Communications, San Diego, 2013

  49. Ahlgren B, Dannewitz C, Imbrenda C, et al. A survey of informationcentric networking. IEEE Commun Mag, 2012, 50: 26–36

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengt Ahlgren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, G., Hidell, M., Abrahamsson, H. et al. Resource management in radio access and IP-based core networks for IMT Advanced and Beyond. Sci. China Inf. Sci. 56, 1–16 (2013). https://doi.org/10.1007/s11432-012-4777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4777-2

Keywords

Navigation