Skip to main content
Log in

Constructions of QC LDPC codes based on integer sequences

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Based on difference sequence and Hoey sequence, three types of (2, F) and (3, F) quasi cyclic (QC) low-density parity-check (LDPC) codes are constructed. All 4-cycles and even 6-cycles are removed in the Tanner graph, and the girth is not less than six. The decoding complexity as well as extension to irregular case is analyzed. Simulation results show that in AWGN and Rayleigh fading channels, the codes can achieve the same error performance as their counterpart PEG codes, and outperform the corresponding MacKay codes and array codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gallager R G. Low density parity-check codes. IRE Trans Inf Theory, 1962, 8: 21–28

    Article  MATH  MathSciNet  Google Scholar 

  2. MacKay D J C. Good error correcting codes based on very sparse matrices. IEEE Trans Inf Theory, 1999, 45: 399–431

    Article  MATH  MathSciNet  Google Scholar 

  3. Richardson T J, Urbanke R L. The capacity of low-density parity-check codes under message-passing decoding. IEEE Trans Inf Theory, 2001, 47: 599–618

    Article  MATH  MathSciNet  Google Scholar 

  4. Lin C Y, Chou S C, Ku M K. Operation reduced low-density parity-check decoding algorithms for low power communication systems. Int J Commun Syst, 2013, 26: 68–83

    Article  Google Scholar 

  5. Huang J, Zhang L J. Relative-residual-based dynamic schedule for belief propagation decoding of LDPC codes. China Commun, 2011, 8: 47–53

    Google Scholar 

  6. Liu M H, Zhang L J. Iterative hybrid decoding algorithm for LDPC codes based on attenuation factor. Front Electr Electron Eng, 2012, 7: 279–285

    Google Scholar 

  7. Huang J F, Huang C M, Yang C C. Construction of one-coincidence sequence quasi-cyclic LDPC codes of large girth. IEEE Trans Inf Theory, 2012, 58: 1825–1836

    Article  Google Scholar 

  8. Zhang L, Huang Q, Lin S, et al. Quasi-cyclic LDPC codes: an algebraic construction, rank analysis, and codes on Latin squares. IEEE Trans Commun, 2010, 58: 3126–3139

    Article  Google Scholar 

  9. Falsafain H, Esmaeili M. A new construction of structured binary regular LDPC codes based on Steiner systems with parameter t > 2. IEEE Trans Commun, 2012, 60: 74–80

    Article  Google Scholar 

  10. Wang K Y, Xiao Y, Kim K. Construction of protograph LDPC codes with circular generator matrices. J Syst Eng Electron, 2011, 22: 840–847

    Google Scholar 

  11. Kang J Y, Huang Q, Zhang L, et al. Quasi-cyclic LDPC codes: an algebraic construction. IEEE Trans Commun, 2010, 58: 1383–1396

    Article  Google Scholar 

  12. Nguyen D V, Chilappagari S K, Marcellin M W, et al. On the construction of structured LDPC codes free of small trapping sets. IEEE Trans Inf Theory, 2012, 58: 2280–2302

    Article  MathSciNet  Google Scholar 

  13. Myung S, Yang K, Kim J. Quasi-cyclic LDPC codes for fast encoding. IEEE Trans Inf Theory, 2005, 51: 2894–2901

    Article  MathSciNet  Google Scholar 

  14. Chen L, Djurdjevic I, Xu J. Construction of QC LDPC codes based on the minimum-weight codewords of RS codes. In: Proceedings of IEEE International Symposium on Information Theory, Chicago, 2004. 239

    Google Scholar 

  15. Lan L, Zeng L Q, Tai Y Y, et al. Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: a finite field approach. IEEE Trans Inf Theory, 2007, 53: 2429–2458

    Article  MathSciNet  Google Scholar 

  16. Fossorier M P C. Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans Inf Theory, 2004, 50: 1788–1794

    Article  MathSciNet  Google Scholar 

  17. Fan J L. Array codes as low-density parity-check codes. In: Proceedings of 2nd International Symposium on Turbo Codes, Brest, 2000. 553–556

    Google Scholar 

  18. Kim J L, Peled U N, Perepelitsa I, et al. Explicit construction of families of LDPC codes with no 4-cycles. IEEE Trans Inf Theory, 2004, 50: 2378–2388

    Article  MathSciNet  Google Scholar 

  19. Tanner R M, Sridhara D, Sridharan A, et al. LDPC block and convolutional codes based on circulant matrices. IEEE Trans Inf Theory, 2004, 50: 2966–2984

    Article  MATH  MathSciNet  Google Scholar 

  20. Song H, Liu J, Kumar B. Low complexity LDPC codes for partial response channels. In: Proceedings of IEEE Globecom Conference, Taipei, 2002. 1294–1299

    Google Scholar 

  21. Tanner R M. A recursive approach to low complexity codes. IEEE Trans Inf Theory, 1981, 27: 533–547

    Article  MATH  MathSciNet  Google Scholar 

  22. Brualdi R A. Introductory Combinatorics. 3rd ed. New Jersey: Prentice Hall, 1999

    MATH  Google Scholar 

  23. Hu X Y, Eleftheriou E, Arnold D M. Progressive edge-growth Tanner graphs. In: Proceedings of IEEE Globecom Conference, San Antonio, 2001. 995–1001

    Google Scholar 

  24. Eleftheriou E, Ölcer S. Low-density parity-check codes for digital subscriber lines. In: Proceedings of IEEE International Conference on Communications, New York, 2002. 1752–1757

    Google Scholar 

  25. Varnica N, Kavcic A. Optimized low-density parity-check codes for partial response channels. IEEE Comm Lett, 2003, 7: 168–170

    Article  Google Scholar 

  26. Thangaraj A, McLaughlin S W. Thresholds and scheduling for LDPC-coded partial response channels. IEEE Trans Magnet, 2002, 38: 2307–2309

    Article  Google Scholar 

  27. Ge X, Xia S T. Structured non-binary LDPC codes with large girth. IET Electron Lett, 2007, 43: 1220–1222

    Article  Google Scholar 

  28. Peng F, Ryan W E, Wesel R D. Surrogate-channel design of universal LDPC codes. IEEE Comm Lett, 2006, 10: 480–482

    Article  Google Scholar 

  29. Jones C R, Tian T, Villasenor J, et al. The universal operation of LDPC codes over scalar fading channels. IEEE Trans Comm, 2007, 55: 122–132

    Article  Google Scholar 

  30. Hou J, Siegel P, Milstein L B. Performance analysis and code optimization of low density parity-check codes on Rayleigh fading channels. IEEE J Select Area Comm, 2001, 19: 924–934

    Article  Google Scholar 

  31. Xu J, Chen L, Djurdjevic I, et al. Construction of regular and irregular LDPC codes: geometry decomposition and masking. IEEE Trans Inf Theory, 2007, 53: 121–134

    Article  MathSciNet  Google Scholar 

  32. Richardson T J, Urbanke R A, Urbanke R L. Design of capacity-approaching irregular LDPC codes. IEEE Trans Inf Theory, 2001, 47: 619–637

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiJun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, B. & Cheng, L. Constructions of QC LDPC codes based on integer sequences. Sci. China Inf. Sci. 57, 1–14 (2014). https://doi.org/10.1007/s11432-013-4971-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4971-x

Keywords

Navigation