Skip to main content
Log in

Excitation of coherent plasmon modes in a polymer structure with side resonators

  • Special Focus
  • Progress of Projects Supported by NSFC
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A plasmonic polymer composed of dumbbell resonator (DBR) molecules was synthesized. The DBRs were connected with each other through slits that act as chemical bonds, resulting in a strong exchange current interaction between these DBRs. The polymer structure has side atoms connected to the backbone. A TM wave can be coupled into these side atoms, and a coherent plasmon wave can be excited along the polymer chain. This introduces a resonance peak in the optical transmission spectrum. The dispersion property of such a coherent mode agrees well with the theoretical calculation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prodan E, Radloff C, Halas N J, et al. A hybridization model for the plasmon response of complex nanostructures. Science, 2003, 302: 419–422

    Article  Google Scholar 

  2. Halas N J, Lal S, Chang WS, et al. Plasmons in strongly coupled metallic nanostructures. Chem Rev, 2011, 111: 3913–3961

    Article  Google Scholar 

  3. Fan J A, Bao K, Wu C, et al. Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett, 2010, 10: 4680–4685

    Article  Google Scholar 

  4. Hentschel M, Saliba M, Vogelgesang R, et al. Transition from isolated to collective modes in plasmonic oligomers. Nano Lett, 2010, 10: 2721–2726

    Article  Google Scholar 

  5. Brown L V, Sobhani H, Lassiter J B, et al. Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano, 2010, 4: 819–832

    Article  Google Scholar 

  6. Liu H, Genov D A, Wu D M, et al. Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures. Phys Rev B, 2007, 76: 073101

    Article  Google Scholar 

  7. Liu N, Langguth L, Weiss T, et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mat, 2009, 8: 758–762

    Article  Google Scholar 

  8. Liu N, Liu H, Zhu S, et al. Stereometamaterials. Nat Photon, 2009, 3: 157–162

    Article  Google Scholar 

  9. Luk’yanchuk B, Zheludev N I, Maier S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mat, 2010, 9: 707–715

    Article  Google Scholar 

  10. Hao F, Sonnefraud Y, Dorpe P V, et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett, 2008, 8: 3983–3988

    Article  Google Scholar 

  11. Verellen N, Sonnefraud Y, Sobhani H, et al. Fano resonances in individual coherent plasmonic nanocavities. Nano Lett, 2009, 9: 1663–1667

    Article  Google Scholar 

  12. Le F, Brandl D W, Urzhumov Y A, et al. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano, 2008, 2: 707–718

    Article  Google Scholar 

  13. Liu N, Tang M L, Hentschel M, et al. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat Mater, 2011, 10: 631–636

    Article  Google Scholar 

  14. Liu N, Hentschel M, Weiss T, et al. Three-dimensional plasmon rulers. Science, 2011, 332: 1407–1410

    Article  Google Scholar 

  15. Quinten M, Leitner A, Krenn J R, et al. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt Lett, 1998, 23: 1331–1333

    Article  Google Scholar 

  16. Brongersma M L, Hartman J W, Atwater H A. Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys Rev B, 2000, 62: R16356–R16359

    Article  Google Scholar 

  17. Maier S A, Kik P G, Atwater H A. Optical pulse propagation in metal nanoparticle chain waveguides. Phys Rev B, 2003, 67: 205402

    Article  Google Scholar 

  18. Krenn J R. Nanoparticle waveguides: watching energy transfer. Nat Mat, 2003, 2: 210–211

    Article  Google Scholar 

  19. Girard C, Quidant R. Nearfield optical transmittance of metal particle chain waveguides. Opt Express, 2004, 12: 6141–6146

    Article  Google Scholar 

  20. Liu H, Liu Y M, Li T, et al. Coupled magnetic plasmons in metamaterials. Phys Status Solidi B, 2009, 246: 1397–1406

    Article  Google Scholar 

  21. Crozier K B, Togan E, Simsek E, et al. Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains. Opt Express, 2007, 15: 17482–17493

    Article  Google Scholar 

  22. Fung K H, Chan C T. Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis. Opt Ics Lett, 2007, 32: 973–975

    Article  Google Scholar 

  23. Bendana X M, Garcia De Abajo F J. Confined collective excitations of self-standing and supported planar periodic particle arrays. Opt Express, 2009, 17: 18826–18835

    Article  Google Scholar 

  24. Andrea A, Pavel A B, Nader E. Coupling and guided propagation along parallel chains of plasmonic nanoparticles. New J Phys, 2011, 13: 033026

    Article  Google Scholar 

  25. Fung K H, Tang R C H, Chan C T. Analytical properties of the plasmon decay profile in a periodic metal-nanoparticle chain. Optics Letters, 2011, 36: 2206–2208

    Article  Google Scholar 

  26. Liu H, Genov D A, Wu D M, et al. Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies. Phys Rev Lett, 2006, 97: 243902

    Article  Google Scholar 

  27. Park T H, Mirin N, Lassiter J B, et al. Optical properties of a nanosized hole in a thin metallic film. ACS Nano, 2008, 2: 25–32

    Article  Google Scholar 

  28. Liu H, Li T, Wang Q J, et al. Extraordinary optical transmission induced by excitation of a magnetic plasmon propagation mode in a diatomic chain of slit-hole resonators. Phys Rev B, 2009, 79: 024304

    Article  MathSciNet  Google Scholar 

  29. Zhu C, Liu H, Wang S M, et al. Electric and magnetic excitation of coherent magnetic plasmon waves in a onedimensional meta-chain. Opt Express, 18: 26268–26273

  30. Sydoruk O, Zhuromskyy O, Shamonina E, et al. Phonon-like dispersion curves of magnetoinductive waves. Appl Phys Lett, 2005, 87: 072501–072503

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, C., Liu, H., Sheng, C. et al. Excitation of coherent plasmon modes in a polymer structure with side resonators. Sci. China Inf. Sci. 56, 1–6 (2013). https://doi.org/10.1007/s11432-013-5028-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-5028-x

Keywords

Navigation