Skip to main content
Log in

Terahertz narrow bandstop, broad bandpass filter using double-layer S-shaped metamaterials

  • Special Focus
  • Progress of Projects Supported by NSFC
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this study, double-layer S-shaped metamaterials (MMs) are analyzed by terahertz time-domain spectroscopy. These materials exhibit narrow bandstop and broad bandpass transmission properties at both horizontal and vertical electric-field polarizations. A 117% increase in the unloaded quality factor is experimentally observed for these materials. The center frequency is approximately 0.45 THz, with a 3-dB bandwidth of 0.52 THz from 0.20 to 0.72 THz at normal incidence. The measured average insertion loss is 0.5 dB with a ripple of 1 dB. These results show that double-layer S-shaped MMs are effective in designing tunable terahertz devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferguson B, Zhang X C. Materials for terahertz science and technology. Nat Mat, 2002, 1: 26–33

    Article  Google Scholar 

  2. Federici J F Schulkin B, Huang F, et al. THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond Sci Technol, 2005, 20: S266–S280

    Article  Google Scholar 

  3. Piesiewicz R, Kleine-Ostmann T, Krumbholz N, et al. Short-range ultra-broadband terahertz communications: concepts and perspectives. IEEE Trans Antenn Propag, 2007, 49: 24–29

    Article  Google Scholar 

  4. Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research. J Infrar Millim Terahertz Waves, 2011, 32: 143–171

    Article  Google Scholar 

  5. Genovesi S, Yen T, Monorchio A, et al. Optimization of wide-bandpass filter within the terahertz frequency regime. In: Proceedings of 30th URSI General Assembly and Scientific Symposium, Istanbul, 2011. 1–4

    Chapter  Google Scholar 

  6. Al-Naib I A I Jansen C, Born N, et al. Polarization and angle independent terahertz metamaterials with high Q-factors. Appl Phys Lett, 2011, 98: 091107

    Article  Google Scholar 

  7. Zhang X Q, Gu J Q Cao W, et al. Bilayer-fish-scale ultrabroad terahertz bandpass filter. Opt Lett, 2012, 37: 906–909

    Article  Google Scholar 

  8. LuM Z, Li W Z Brown E R. Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures. Opt Lett, 2011, 36: 1071–1073

    Article  Google Scholar 

  9. Qu D X Grischkowsky D Zhang W L. Terahertz transmission properties of thin, subwavelength metallic hole arrays. Opt Lett, 2004, 29: 896–898

    Article  Google Scholar 

  10. Miyamaru F, Hangyo M. Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons. Phys Rev B, 2005, 71: 165408

    Article  Google Scholar 

  11. Gallant A J. Passband filters for terahertz radiation based on dual metallic photonic structures. Appl Phys Lett, 2007, 91: 161115

    Article  Google Scholar 

  12. Li J S. Terahertz wave narrow bandpass filter based on photonic crystal. Opt Commun, 2012, 283: 2647–2650

    Article  Google Scholar 

  13. Fan F Chang S J Hou Y. Metallic photonic crystals for terahertz tunable filters. Sci China Inf Sci, 2012, 55: 72–78

    Article  Google Scholar 

  14. Liu Y, Zhang X. Metamaterials: a new frontier of science and technology. Chem Soc Rev, 2011, 40: 2494–2507

    Article  Google Scholar 

  15. Vendik I B Vendik O G Odit M A, et al. Tunable metamaterials for controlling THz radiation. IEEE Trans THz Sci Technol, 2012, 2: 538–549

    Article  Google Scholar 

  16. Singh R, Al-Naib I, Koch M, et al. Sharp Fano resonances in THz metamaterials. Opt Express, 2011, 17: 6312–6319

    Article  Google Scholar 

  17. Chen Z C Han N R Pan Z Y, et al. Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates. Opt Express, 2011, 1: 151–157

    Article  Google Scholar 

  18. Han N R Chen Z C Lim C S, et al. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. Opt Express, 2011, 19: 6990–6998

    Article  Google Scholar 

  19. Chiang Y J Yang C S Yang Y H, et al. An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial. Appl Phys Lett, 2011, 99: 191909

    Article  Google Scholar 

  20. Yeh T T Genovesi S, Monorchio A, et al. Ultra-broad and sharp-transition bandpass terahertz filters by hybridizing multiple resonances mode in monolithic metamaterials. Opt Express, 2012, 20: 7580–7589

    Article  Google Scholar 

  21. Singh R, Tian Z, Han J G, et al. Cryogenic temperatures as a path toward high-Q terahertz metamaterial. Appl Phys Lett, 2010, 96: 071114

    Article  Google Scholar 

  22. Jin B B Zhang C H Engelbrecht S, et al. Low loss and magnetic field-tunable superconducting terahertz metamaterial. Opt Express, 2010, 18: 17504–17509

    Article  Google Scholar 

  23. Zhang C H Wu J B Jin B B, et al. Low-loss terahertz metamaterial from superconducting niobium nitride films. Opt Express, 2012, 20: 42–47

    Article  Google Scholar 

  24. Chen H S Ran L X Huangfu J Tao, et al. Left-handed materials composed of only S-shaped resonators. Phys Rev E, 2004, 70: 057605

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BiaoBing Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, L., Jin, B., Wu, J. et al. Terahertz narrow bandstop, broad bandpass filter using double-layer S-shaped metamaterials. Sci. China Inf. Sci. 56, 1–7 (2013). https://doi.org/10.1007/s11432-013-5034-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-5034-z

Keywords

Navigation