Skip to main content
Log in

Fractional partial differential equation denoising models for texture image

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, a set of fractional partial differential equations based on fractional total variation and fractional steepest descent approach are proposed to address the problem of traditional drawbacks of PM and ROF multi-scale denoising for texture image. By extending Green, Gauss, Stokes and Euler-Lagrange formulas to fractional field, we can find that the integer formulas are just their special case of fractional ones. In order to improve the denoising capability, we proposed 4 fractional partial differential equation based multiscale denoising models, and then discussed their stabilities and convergence rate. Theoretic deduction and experimental evaluation demonstrate the stability and astringency of fractional steepest descent approach, and fractional nonlinearly multi-scale denoising capability and best value of parameters are discussed also. The experiments results prove that the ability for preserving high-frequency edge and complex texture information of the proposed denoising models are obviously superior to traditional integral based algorithms, especially for texture detail rich images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chan T, Esedoglu S, Park F, et al. Recent developments in total variation image restoration. In: Paragios N, Yunmei C, Faugeras O, eds. Handbook of Mathematical Models in Computer Vision. New York: Springer-Verlag, 2005

    Google Scholar 

  2. Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one. Multiscale Model Simul, 2005, 4: 490–530

    Article  MATH  MathSciNet  Google Scholar 

  3. Weickert J. Anisotropic Diffusion in Image Processing. Stuttgart: Teubner, 1998

    MATH  Google Scholar 

  4. Aubert G, Kornprobst P. Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. New York: Springer-Verlag, 2006

    Google Scholar 

  5. Perona P, Malik J. Scale-space and edge detecting using anisotropic diffusion. IEEE Trans Patt Anal Mach Intell, 1990, 12: 629–639

    Article  Google Scholar 

  6. Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D-Nonlinear Phenom, 1992, 60: 259–268

    Article  MATH  Google Scholar 

  7. Sapiro G, Ringach D. Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans Image Process, 1996, 5: 1582–1586

    Article  Google Scholar 

  8. Blomgren P, Chan T. Color TV: total variation methods for restoration of vector-valued images. IEEE Trans Image Process, 1998, 7: 304–309

    Article  Google Scholar 

  9. Galatsanos N P, Katsaggelos A K. Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation. IEEE Trans Image Process, 1992, 1: 322–336

    Article  Google Scholar 

  10. Li S Z. Close-form solution and parameter selection for convex minimization-based edge-preserving smoothing. IEEE Trans Patt Anal Mach Intell, 1998, 20: 916–932

    Article  Google Scholar 

  11. Nguyen N, Milanfar P, Golub G. Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement. IEEE Trans Image Process, 2001, 10: 1299–1308

    Article  MATH  MathSciNet  Google Scholar 

  12. Strong D M, Aujol J F, Chan T F. Scale recognition, regularization parameter selection, and Meyer’s g norm in total variation regularization, multiscale model. Multiscale Model Simul, 2006, 5: 273–303

    Article  MATH  MathSciNet  Google Scholar 

  13. Thompson A M, Brown J C, Kay J W, et al. A study of methods of choosing the smoothing parameter in image restoration by regularization. IEEE Trans Patt Anal Mach Intell, 1991, 13: 326–339

    Article  Google Scholar 

  14. Mrazek P, Navara M. Selection of optimal stopping time for nonlinear diffusion filtering. Int J Comput Vis, 2003, 52: 189–203

    Article  Google Scholar 

  15. Gilboa G, Sochen N, Zeevi Y Y. Estimation of optimal PDE-based denoising in the SNR sense. IEEE Trans Image Process, 2006, 15: 2269–2280

    Article  Google Scholar 

  16. Vogel C R, Oman M E. Iterative methods for total variation denoising. SIAM J Sci Comput, 1996, 17: 227–238

    Article  MATH  MathSciNet  Google Scholar 

  17. Dobson D C, Vogel C R. Convergence of an iterative method for total variation denoising. SIAM J Numer Anal, 1997, 34: 1779–1791

    Article  MATH  MathSciNet  Google Scholar 

  18. Chambolle A. An algorithm for total variation minimization and applications. J Math Imaging Vis, 2004, 20: 89–97

    Article  MathSciNet  Google Scholar 

  19. Darbon J, Sigelle M. Exact optimization of discrete constrained total variation minimization problems. In: Proccedings of 10th International Workshop on Combinatorial Image Analysis, New Zealand, 2004. 548–557

    Chapter  Google Scholar 

  20. Darbon J, Sigelle M. Image restoration with discrete constrained total variation part I: fast and exact optimization. J Math Imaging Vis, 2006, 26: 261–276

    Article  MathSciNet  Google Scholar 

  21. Darbon J, Sigelle M. Image restoration with discrete constrained total variation part II: levelable functions, convex priors and non-convex cases. J Math Imaging Vis, 2006, 26: 277–291

    Article  MathSciNet  Google Scholar 

  22. Wohlberg B, Rodriguez P. An iteratively reweighted norm algorithm for minimization of total variation functionals. IEEE Signal Process Lett, 2007, 14: 948–951

    Article  Google Scholar 

  23. Catte F, Lions P L, Morel J M, et al. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J Numer Anal, 1992, 29: 182–193

    Article  MATH  MathSciNet  Google Scholar 

  24. Meyer Y. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: the Fifteenth Dean Jacqueline B. Lewis Memorial Lectures. Boston: American Mathematical Society, 2001

    Google Scholar 

  25. Strong D, Chan T. Edge-preserving and scale-dependent properties of total variation regularization. Inverse Probl, 2003, 19: 165–187

    Article  MathSciNet  Google Scholar 

  26. Alliney S. A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans Signal Process, 1997, 45: 913–917

    Article  Google Scholar 

  27. Nikolova M. A variational approach to remove outliers and impulse noise. J Math Imag Vis, 2004, 20: 99–120

    Article  MathSciNet  Google Scholar 

  28. Chan T, Esedoglu S. Aspects of total variation regularized l 1 function approximation. SIAM J Numer Anal, 2005, 65: 1817–1837

    MATH  MathSciNet  Google Scholar 

  29. Nikolova M. Minimizers of cost-functions involving nonsmooth data-fidelity terms. SIAM J Numer Anal, 2002, 40: 965–994

    Article  MATH  MathSciNet  Google Scholar 

  30. Osher S, Burger M, Goldfarb D, et al. An iterative regularization method for total variation based on image restoration. Multiscale Model Simul, 2005, 4: 460–489

    Article  MATH  MathSciNet  Google Scholar 

  31. Gilboa G, Zeevi Y Y, Sochen N. Texture preserving variational denoising using an adaptive fidelity term. In: Proccedings of Variational, Geometric and Level Set Methods in Computer Vision, Nice, 2003. 137–144

    Google Scholar 

  32. Esedoglu S, Osher S. Decomposition of images by the anisotropic Rudin-Osher-Fatemi model. Commun Pure Appl Math, 2004, 57: 1609–1626

    Article  MATH  MathSciNet  Google Scholar 

  33. Blomgren P, Chan T, Mulet P. Extensions to total variation denoising. In: Proceedings of SPIE, Advanced Signal Processing: Algorithms, Architectures, and Implementations, Franklin, 1997. 267–375

    Google Scholar 

  34. Blomgren P, Mulet P, Chan T, et al. Total variation image restoration: numerical methods and extensions. In: Proceedings of International Conference on Image Processing, Santa Barbara, 1997. 384–387

    Chapter  Google Scholar 

  35. Chan T, Marquina A, Mulet P. High-order total variation-based image restoration. SIAM J Sci Comput, 2000, 22: 503–516

    Article  MATH  MathSciNet  Google Scholar 

  36. You Y L, Kaveh M. Fourth-order partial differential equation for noise removal. IEEE Trans Image Process, 2000, 9: 1723–1730

    Article  MATH  MathSciNet  Google Scholar 

  37. Lysaker M, Lundervold A, Tai X C. Noise removal using fourth order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans Image Process, 2003, 12: 1579–1590

    Article  MATH  Google Scholar 

  38. Gilboa G, Sochen N, Zeevi Y Y. Image enhancement and denoising by complex diffusion processes. IEEE Trans Patt Anal Mach Intell, 2004, 26: 1020–1036

    Article  Google Scholar 

  39. Chambolle A, Lions P. Image recovery via total variation minimization and related problem. Numer Math, 1997, 76: 167–188

    Article  MATH  MathSciNet  Google Scholar 

  40. Osher S, Sole A, Vese L. Image decomposition and restoration using total variation minimization and the H 1 norm. Multiscale Model Simul, 2005, 1: 349–370

    Article  MathSciNet  Google Scholar 

  41. Lysaker M, Tai X C. Iterative images restoration combining a total variation minimization and a second-order functional. Int J Comput Vis, 2006, 66: 5–18

    Article  MATH  Google Scholar 

  42. Li F, Shen C M, Fan J S, et al. Image restoration combining a total variational filter and a fourth-order filter. J Vis Commun Image Represent, 2007, 18: 322–330

    Article  Google Scholar 

  43. Lysaker M, Osher M, Tai X C. Noise removal using smoothed normals and surface fitting. IEEE Trans Image Process, 2004, 13: 1345–1357

    Article  MATH  MathSciNet  Google Scholar 

  44. Dong F F, Liu Z, Kong D X, et al. An improved lot model for image restoration. J Math Imag Vis, 2009, 34: 89–97

    Article  MathSciNet  Google Scholar 

  45. Love E R. Fractional derivatives of imaginary order. J London Math Soc, 1971, 3: 241–259

    Article  MATH  MathSciNet  Google Scholar 

  46. Oldham K B, Spanier J. The Fractional Calculus: Integrations and Differentiations of Arbitrary Order. New York: Academic Press, 1974

    Google Scholar 

  47. McBride A C. Fractional Calculus. New York: Halsted Press, 1986

    Google Scholar 

  48. Nishimoto K. Fractional Calculus. New Haven: University of New Haven Press, 1989

    MATH  Google Scholar 

  49. Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives. Yverdon: Gordon and Breach, 1993

    MATH  Google Scholar 

  50. Miller K S. Derivatives of noninteger order. Math Mag, 1995, 68: 183–192

    Article  MATH  MathSciNet  Google Scholar 

  51. Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives: Theory and Applications. Philadelphia: Gordon and Breach Science Publishers, 1992. 75–85

    Google Scholar 

  52. Engheta N. On fractional calculus and fractional multipoles in electromagnetism. IEEE Antennas Propag Mag, 1996, 44: 554–566

    Article  MATH  MathSciNet  Google Scholar 

  53. Engheta N. On the role of fractional calculus in electromagnetic theory. IEEE Antennas Propag Mag, 1997, 39: 35–46

    Article  Google Scholar 

  54. Chen M P, Srivastava H M. Fractional calculus operators and their applications involving power functions and summation of series. Appl Math Comput, 1997, 81: 287–304

    Article  MathSciNet  Google Scholar 

  55. Butzer P L, Westphal U. Applications of Fractional Calculus in Physics. Singapore: World Scientific, 2000

    MATH  Google Scholar 

  56. Kempfle S, Schaefer I, Beyer H R. Fractional calculus via functional calculus: theory and applications. Nonlinear Dyn, 2002, 29: 99–127

    Article  MATH  Google Scholar 

  57. Richard L M. Fractional calculus in bioengineering, critical reviews in biomedical engineering. CRC Crit Rev Biomed Eng, 2004, 32: 1–377

    Article  MathSciNet  Google Scholar 

  58. Kilbas A A, Srivastava H M, Trujiilo J J. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006

    Google Scholar 

  59. Sabatier J, Agrawal O P, Tenreiro Machado J A. Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, 2007

    Book  Google Scholar 

  60. Koeller R C. Applications of the fractional calculus to the theory of viscoelasticity. J Appl Mech, 1984, 51: 294–298

    Article  MathSciNet  Google Scholar 

  61. Rossikhin Y A, Shitikova M V. Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl Mech Rev, 1997, 50: 15–67

    Article  Google Scholar 

  62. Manabe S. A suggestion of fractional-order controller for flexible spacecraft attitude control. Nonlinear Dyn, 2002, 29: 251–268

    Article  MATH  Google Scholar 

  63. Chen W, Holm S. Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency dependency. J Acoust Soc Amer, 2004, 115: 1424–1430

    Article  Google Scholar 

  64. Perrin E, Harba R, Berzin-Joseph C, et al. Nth-order fractional Brownian motion and fractional Gaussian noises. IEEE Trans Signal Process, 2001, 49: 1049–1059

    Article  Google Scholar 

  65. Tseng C C. Design of fractional order digital FIR differentiators. IEEE Signal Process Lett, 2001, 8: 77–79

    Article  Google Scholar 

  66. Chen Y Q, Vinagre B M. A new IIR-type digital fractional order differentiator. Signal Process, 2003, 83: 2359–2365

    Article  MATH  Google Scholar 

  67. Pu Y F. Research on application of fractional calculus to latest signal analysis and processing. Dissertation for the Doctoral Degree. Chengdu: Sichuan University, 2006

    Google Scholar 

  68. Pu Y F, Yuan X, Liao K, et al. Five numerical algorithms of fractional calculus applied in modern signal analyzing and processing. J Sichuan Univ (Eng Sci Ed), 2005, 37: 118–124

    Google Scholar 

  69. Pu Y F, Yuan X, Liao K, et al. Structuring analog fractance circuit for 1/2 order fractional calculus. In: Proceedings of IEEE 6th International Conference on ASIC, Shanghai, 2005. 1039–1042

    Google Scholar 

  70. Pu Y F, Yuan X, Liao K, et al. Implement any fractional order neural-type pulse oscillator with net-grid type analog fractance circuit. J Sichuan Univ (Eng Sci Ed), 2006, 38: 128–132

    Google Scholar 

  71. Duits R, Felsberg M, Florack L, et al. α scale spaces on a bounded domain. In: Proceedings of the 4th International Conference on Scale Space Methods in Computer Vision, Isle of Skye, 2003. 494–510

    Chapter  Google Scholar 

  72. Didas S, Burgeth B, Imiya A, et al. Regularity and scale space properties of fractional high order linear filtering. Scale Space PDE Meth Comput Vis, 2005, 3459: 13–25

    Article  Google Scholar 

  73. Unser M, Blu T. Fractional splines and wavelets. SIAM Rev, 2000, 42: 43–67

    Article  MATH  MathSciNet  Google Scholar 

  74. Ninness B. Estimation of 1/f noise. IEEE Trans Inf Theory, 1998, 44: 32–46

    Article  MATH  MathSciNet  Google Scholar 

  75. Duits R, Florack L, Graaf J, et al. On the axioms of scale space theory. J Math Imag Vis, 2004, 20: 267–298

    Article  Google Scholar 

  76. Mathieu B, Melchior P, Oustaloup A, et al. Fractional differentiation for edge detection. Signal Process, 2003, 83: 2421–2432

    Article  MATH  Google Scholar 

  77. Liu S C, Chang S. Dimension estimation of discrete-time fractional brownian motion with applications to image texture classification. IEEE Trans Image Process, 1997, 6: 1176–1184

    Article  Google Scholar 

  78. Pu Y F. Fractional calculus approach to texture of digital image. In: Proceedings of IEEE 8th International Conference on Signal Processing, Guilin, 2006. 1002–1006

    Google Scholar 

  79. Pu Y F. Fractional Differential Filter of Digital Image. China Patent, ZL200610021702.3, 2006

    Google Scholar 

  80. Pu Y F. High Precision Fractional Calculus Filter of Digital Image. China Patent, ZL201010138742.2, 2010

  81. Pu Y F, Wang W X, Zhou J L, et al. Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation. Sci China Ser F-Inf Sci, 2008, 38: 2252–2272

    Google Scholar 

  82. Pu Y F, Zhou J L. A novel approach for multi-scale texture segmentation based on fractional differential. Int J Comput Math, 2011, 88: 58–78

    Article  MATH  MathSciNet  Google Scholar 

  83. Pu Y F, Zhou J L, Yuan X. Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement. IEEE Trans Image Process, 2010, 19: 491–511

    Article  MathSciNet  Google Scholar 

  84. Guidotti P, Lambers J V. Two new nonlinear nonlocal diffusions for noise reduction. J Math Imag Vis, 2009, 33: 25–37

    Article  MathSciNet  Google Scholar 

  85. Bai J, Feng X C. Fractional-order anisotropic diffusion for image denoising. IEEE Trans Image Process, 2007, 16: 2492–2502

    Article  MathSciNet  Google Scholar 

  86. Vasily E T. Fractional vector calculus and fractional Maxwell’s equations. Ann Phys, 2008, 323: 2756–2778

    Article  MATH  Google Scholar 

  87. Baleanu D, Machado J, Luo A J. Fractional Dynamics And Control. New York: Springer, 2011

    Google Scholar 

  88. Agrawal O P. Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo derivative. J Vib Control, 2007, 13: 1217–1237

    Article  MATH  MathSciNet  Google Scholar 

  89. Snyman J. Practical Mathematical Optimization: an Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms. Springer, 2005

    Google Scholar 

  90. Halmos P R. Measure Theory. Springer-Verlag, 1974

    MATH  Google Scholar 

  91. Munroe M E. Introduction to Measure and Integration. Addison-Wesley, 1953. 25–90

    MATH  Google Scholar 

  92. Tychonoff A N, Arsenin V Y. Solution of Ill-Posed Problems. Washington: Winston & Sons, 1977. 45–78

    Google Scholar 

  93. Tomasi C, Manduchi R. Bilateral filtering for gray and color images. In: Proceedings of the IEEE International Conference on Computer Vision, Bombay, 1998. 839–846

    Google Scholar 

  94. Zhang M, Gunturk B K. Multiresolution bilateral filtering for image denoising. IEEE Trans Image Process, 2008, 17: 2324–2333

    Article  MathSciNet  Google Scholar 

  95. Yu H, Zhao L, Wang H. Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the spatial domain. IEEE Trans Image Process, 2009, 18: 2364–2369

    Article  MathSciNet  Google Scholar 

  96. Chen G Y, Bui T D. Multiwavelets denoising using neighboring coefficients. IEEE Signal Process Lett, 2003, 10: 211–214

    Article  Google Scholar 

  97. Buades A, Coll B, Morel J M. A non-local algorithm for image denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, 2005. 60–65

    Google Scholar 

  98. Buades A, Coll B, Morel J M. Nonlocal image and movie denoising. Int J Comput Vis, 2008, 76: 123–139

    Article  Google Scholar 

  99. Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error measurement to structural similarity. IEEE Trans Image Process, 2004, 13: 600–612

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiFei Pu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, Y., Siarry, P., Zhou, J. et al. Fractional partial differential equation denoising models for texture image. Sci. China Inf. Sci. 57, 1–19 (2014). https://doi.org/10.1007/s11432-014-5112-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5112-x

Keywords

Navigation