Skip to main content
Log in

Qos-driven SCTP-based multimedia delivery over heterogeneous wireless networks

以服务质量驱动和基于流控制传输协议的异构无线网络高效流媒体传输策略

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Stream Control Transport Protocol (SCTP)-based handover is supposedly the best suit for current mobile Internet users. However, prevalent SCTP-based handover solutions mostly evaluate candidate networks by a function of multiple attributes such as available bandwidth, delay, etc., which tend to vary often in burst and might cause the instability of handover decisions. Moreover, the SCTP congestion control strategy leads to sudden degradation of users’ quality of experience for multimedia streaming service because of abrupt and frequent strong fluctuations in the transmission rate. In this paper, we propose a novel QoS-driven SCTPbased handover solution (SCTP-QD) appropriate for heterogeneous wireless multimedia transmission. A new network service and transport layer QoS-aware model is designed to help SCTP-QD accurately analyze the service stability and data transmission capacity for each path. A proper QoS-driven handover decision model is introduced in SCTP-QD in order to improve the SCTP handover efficiency while reducing unnecessary handoffs and fail-over probability. A proposal is finally addressed to help SCTP-QD avoid the slow start phase whenever handover occurs. The simulation results show that SCTP-QD outperforms existing solutions in terms of data delivery performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu C Q, Zhao F T, Guan J F, et al. QoE-driven user-centric VoD services in urban multi-homed P2P-based vehicular network. IEEE Trans Veh Technol, 2013, 62: 2273–2289

    Article  Google Scholar 

  2. Xu C Q, Liu T J, Guan J F, et al. CMT-QA: quality-aware adaptive concurrent multipath data transfer in heterogeneous wireless networks. IEEE Trans Mob Comput, 2013, 12: 2193–2205

    Article  Google Scholar 

  3. Xu C Q, Fallon E, Qiao Y S, et al. Performance evaluation of multimedia content distribution over multi-homed wireless networks. IEEE Trans Broadcast, 2011, 57: 204–215

    Article  Google Scholar 

  4. Eddy W M. At what layer does mobility belong. IEEE Commun Mag, 2004, 42: 155–159

    Article  Google Scholar 

  5. Stewart R, Xie Q, Tuexen M, et al. Streaming Control Transmission Protocol (SCTP) Dynamic Address Reconfigureation. IETF RFC 5061, 2007

    Google Scholar 

  6. Stewart R. Stream Control Transmission Protocol. IETF RFC 4960, 2007

    Google Scholar 

  7. Dreibholz T, Rathgeb E, Rungeler I, et al. Stream control transmission protocol: past, current and future standardization activities. IEEE Commun Mag, 2011, 49: 82–88

    Article  Google Scholar 

  8. Wallace T D, Shami A. A review of multihoming issues using the stream control transmission protocol. IEEE Commun Surv Tutor, 2011, 14: 565–578

    Article  Google Scholar 

  9. Shailendra S, Bhattacharjee R, Bose S K. MPSCTP: a simple and efficient multipath algorithm for SCTP. IEEE Commun Lett, 2011, 15: 1139–1141

    Article  Google Scholar 

  10. Liao J X, Wang J Y, Li T H, et al. Introducing multipath selection for concurrent multipath transfer in the future internet. Comput Netw 2011, 55: 1024–1035

    Article  Google Scholar 

  11. Yang W, Li H W, Li F H, et al. RPS: range-based path selection method for concurrent multipath transfer. In: Proceedings of International Wireless Communications and Mobile Computing Conference, Shenzhen, 2010. 944–948

    Google Scholar 

  12. Cao Y L, Xu C Q, Guan J F, et al. Environment-aware CMT for efficient video delivery in wireless multimedia sensor networks. Int J Distrib Sens Netw, 2012, 2012: 381726

    Article  Google Scholar 

  13. Cao Y L, Xu C Q, Guan J F, et al. TCP-friendly CMT-based multimedia distribution over multi-homed wireless networks. In: Proceedings of IEEE Wireless Communications and Networking Conference, Istanbul, 2014. 3070–3075

    Google Scholar 

  14. Cao Y L, Xu C Q, Guan J F, et al. Cross-layer cognitive CMT for efficient multimedia distribution over multi-homed wireless networks. In: Proceedings of IEEE Wireless Communications and Networking Conference, Shanghai, 2013. 4569–4574

    Google Scholar 

  15. Cao Y L, Xu C Q, Guan J F, et al. Ant colony optimization based cross-layer bandwidth aggregation scheme for efficient data delivery in multi-homed wireless networks. In: Proceedings of IEEE Vehicular Technology Conference. New York: IEEE, 2013. 1–6

    Google Scholar 

  16. Cao Y L, Xu C Q, Guan J F, et al. SCTP-C 2: cross-layer cognitive SCTP for multimedia streaming over multi-homed wireless networks. In: Proceedings of IEEE Consumer Communications and Networking Conference. New York: IEEE, 2014. 435–440

    Google Scholar 

  17. Pervaiz H, Ni Q, Zarakovitis C C. User adaptive QoS aware selection method for cooperative heterogeneous wireless systems: a dynamic contextual approach. Future Gener Comput Syst, 2014, 39: 75–87

    Article  Google Scholar 

  18. Sun Y F, Sun N, Zhang Z L, et al. The decision-making problem of SCTP optimal path based on cognitive optimization with multi-parameter. In: Proceedings of International Conference on Communications and Mobile Computing. New York: IEEE, 2010. 350–355

    Google Scholar 

  19. Zheng K, Liu M, Li Z C, et al. SHOP: an integrated scheme for SCTP handover optimization in multihomed environments. In: Proceedings of IEEE Global Telecommunications Conference. New York: IEEE, 2008. 1–5

    Google Scholar 

  20. Daoud K, Guillourard K, Herbelin P, et al. A network-controlled architecture for SCTP hard handover. In: Proceedings of IEEE Vehicular Technology Conference. New York: IEEE, 2010. 1–5

    Google Scholar 

  21. Kim Y, Lee S. MSCTP-based handover scheme for vehicular networks. IEEE Commun Lett, 2011, 15: 828–830

    Article  Google Scholar 

  22. Eklund J, Grinnemo K, Brunstrom A, et al. Impact of slow start on SCTP handover performance. In: Proceedings of International Conference on Computer Communications and Networks. New York: IEEE, 2011. 1–7

    Google Scholar 

  23. Kim D P, Lee D H, Koh S J, et al. Adaptive primary path switching for SCTP handover. In: Proceedings of International Conference on Advanced Communication Technology. New York: IEEE, 2008. 900–902

    Google Scholar 

  24. Baharudin M A, Quang T M, Kamioka E. Evaluation of the SCTP optimal path selection with ant colony optimization probabilistic equation implementation. In: Proceedings of IEEE Vehicular Technology Conference. New York: IEEE, 2012. 1–6

    Google Scholar 

  25. Baharudin M A, Quang T M, Kamioka E. Evaluations of ant colony optimization inspired SCTP optimal path selection using E-model. In: Proceedings of IEEE International Conference on Advanced Information Networking and Applications. New York: IEEE, 2012. 487–494

    Google Scholar 

  26. Wang L, Min G Y, Kouvatsos D, et al. Modelling and analysis of a dynamic guard channel handover scheme with heterogeneous call arrival processes. Lect Notes Comput Sci, 2011, 5233: 665–681

    Article  Google Scholar 

  27. Medhi J. Stochastic Models in Queueing Theory. 2nd ed. Boston: Academic Press, 1991. 65–164

    MATH  Google Scholar 

  28. Chiu D, Jain R. Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Comput Netw ISDN Syst, 1989, 17: 1–14

    Article  MATH  Google Scholar 

  29. Mascolo S, Casetti C, Gerla M, et al. TCP Westwood: bandwidth estimation for enhanced transport over wireless links. In: Proceedings of ACM SIGMOBILE. New York: ACM, 2001. 287–297

    Google Scholar 

  30. Stevens-Navarro E, Wong V M S. Comparison between vertical handoff decision algorithms for heterogeneous wireless networks. In: Proceedings of IEEE Vehicular Technology Conference. New York: IEEE, 2006. 947–951

    Google Scholar 

  31. UC Berkeley, LBL, USC/ISI, et al. NS-2 Documentation and Software. Version 2.35. 2011

    Google Scholar 

  32. Xu Z Z, Qin W D, Tang Q Y, et al. Energy-efficient cognitive access approach to convergence communications. Sci China Inf Sci, 2014, 57: 042305

    Google Scholar 

  33. Xu J, Li S C, Qiu L, et al. Energy efficient downlink MIMO transmission with linear precoding. Sci China Inf Sci, 2013, 56: 022309

    MathSciNet  Google Scholar 

  34. Yu H, Qin H H, Li Y Z, et al. Energy-efficient power allocation for non-regenerative OFDM relay links. Sci China Inf Sci, 2013, 56: 022306

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuanLong Cao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Xu, C., Guan, J. et al. Qos-driven SCTP-based multimedia delivery over heterogeneous wireless networks. Sci. China Inf. Sci. 57, 1–10 (2014). https://doi.org/10.1007/s11432-014-5171-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5171-z

Keywords

关键词