Skip to main content

Advertisement

Log in

Collusion-resistant convertible ring signature schemes

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A ring signature scheme provides signer ambiguity by hiding a signer in a ring of arbitrary members appropriately. A convertible ring signature scheme is an extension of a ring signature scheme that authenticates a signer and proves that a real signer and no one else generated a ring signature. In this paper, we first show that the recent convertible ring signature scheme proposed by Jeong et al. is vulnerable to collusion attacks. Second, we present a formal security model for a convertible ring signature with collusion resistance. The security notion of a convertible ring signature is intrinsically different from that of an ordinary ring signature due to the conversion property. For our collusion resistance, we consider full key exposure, that is, even an adversary who knows all secret keys will not be able to break the collusion resistance. Finally, we construct a novel convertible ring signature scheme with collusion resistance and prove the security of the scheme in the presented security model. We also compare our scheme with the existing ring signature schemes in the literature to show its advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bender A, Katz J, Morselli R. Ring signatures: stronger definitions, and constructions without random oracles. J Crypt, 2009, 22: 114–138

    Article  MATH  MathSciNet  Google Scholar 

  2. Rivest R, Shamir A, Tauman Y. How to leak a secret. Lect Notes Comput Sci, 2001, 2248: 552–565

    Article  MathSciNet  Google Scholar 

  3. Lv J, Wang X. Verifiable ring signature. In: Proceedings of CANS’03, Miami, 2003. 663–665

    Google Scholar 

  4. Lee K C, Wen H-A, Hwang T. Convertible ring signature. IEE Proc Commun, 2005, 152: 411–414

    Article  Google Scholar 

  5. Rivest R, Shamir A, Tauman Y. How to leak a secret: theory and applications of ring signatures. Lect Notes Comput Sci, 2010, 3895: 552–565

    Google Scholar 

  6. Hwang J Y. A note on an identity-based ring signature scheme with signer verifiability. Theorl Comput Sci, 2011, 412: 796–804

    Article  MATH  Google Scholar 

  7. Wang H, Zhang F, Sun Y. Cryptanalysis of a generalized ring signature scheme. IEEE Trans Dependable Secur Comput, 2009, 6: 149–151

    Article  Google Scholar 

  8. Jeong I R, Kwon J O, Lee D H. Ring signature with weak linkability and its applications. IEEE Trans Knowl Data Eng, 2008, 20: 1145–1148

    Article  Google Scholar 

  9. Schnorr C P. Efficient signature generation by smart cards. J Crypt, 1991, 4: 161–174

    Article  MATH  MathSciNet  Google Scholar 

  10. Cramer R, Damgård I, Schoenmakers B. Proofs of partial knowledge and simplified design of witness hiding protocols. Lect Notes Comput Sci, 1994, 839: 174–187

    Article  Google Scholar 

  11. Abe M, Ohkubo M, Suzuki K. 1-out-of-n Signatures from a Variety of Keys. Lect Notes Comput Sci, 2002, 2501: 415–432

    Article  MathSciNet  Google Scholar 

  12. Herranz J, Sáez G. Forking lemmas for ring signatures schemes. Lect Notes Comput Sci, 2003, 2904: 266–279

    Article  Google Scholar 

  13. Liu J K, Wong D S. On the security models of (threshold) ring signature schemes. Lect Notes Comput Sci, 2004, 3506: 204–217

    Article  MathSciNet  Google Scholar 

  14. Chandran N, Groth J, Sahai A. Ring signatures of sub-linear size without random oracles. Lect Notes Comput Sci, 2007, 4596: 423–434

    Article  MathSciNet  Google Scholar 

  15. Ohkubo M, Abe M. On the definitions of anonymity for ring signatures. IEICE Trans Fund Electron Commun Comput Sci, 2008, E91-A: 272–282

    Article  Google Scholar 

  16. Schäge S, Schwenk J. A CDH-based ring signature scheme with short signatures and public keys. Lect Notes Comput Sci, 2010, 6052: 129–142

    Article  Google Scholar 

  17. Ki J, Hwang J Y, Nyang D, et al. Constructing strong identity-based designated verifier signatures with self-unverifiability. ETRI J, 2012, 34: 235–244

    Article  Google Scholar 

  18. Au M H, Liu J K, Susilo W. Realizing fully secure unrestricted ID-based ring signature in the standard model based on HIBE. IEEE Trans Inf Forensics Secur, 2013, 8: 1909–1922

    Article  Google Scholar 

  19. Au M H, Liu J K, Susilo W, et al. Constant-size ID-based linkable and revocable-iff-linked ring signature. Lect Notes Comput Sci, 2006, 4329: 364–378

    Article  MathSciNet  Google Scholar 

  20. Chow S S M, Yiu S-M, Hui L C K. Efficient identity based ring signature. Lect Notes Comput Sci, 2005, 3531: 499–512

    Article  Google Scholar 

  21. Herranz J. Identity-based ring signatures from RSA. Theor Comput Sci, 2007, 389: 100–117

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhang F, Kim K. ID-based blind signature and ring signature from pairings. Lect Notes Comput Sci, 2002, 2501: 533–547

    Article  MathSciNet  Google Scholar 

  23. Bresson E, Stern J, Szydlo M. Threshold ring signatures and applications to Ad-hoc groups. Lect Notes Comput Sci, 2002, 2442: 465–480

    Article  MathSciNet  Google Scholar 

  24. Yuen T H, Liu J K, Au M H, et al. Threshold ring signature without random oracles. In: Proceedings of ASIACCS’11, New York, 2011. 261–267

    Google Scholar 

  25. Xu S, Yung M. Accountable ring signatures: a smart card approach. In: Proceedings of Smart Card Research and Advanced Applications VI. Berlin: Springer-Verlag, 2006. 271–281

    Google Scholar 

  26. Fujisaki E, Suzuki K, Tauman Y. Traceable ring signature. Lect Notes Comput Sci, 2007, 4450: 181–200

    Article  Google Scholar 

  27. Boyen X. Mesh signatures: how to leak a secret with unwitting and unwilling participants. Lect Notes Comput Sci, 2001, 4515: 210–217

    Article  MathSciNet  Google Scholar 

  28. Xiong H, Qin Z, Li F. A taxonomy of ring signature schemes: theory and applications. IETE J Res, 2013, 59: 376–382

    Article  Google Scholar 

  29. Wang L, Zhang G, Ma C. A survey of ring signature. Front Elect Electron Eng China, 2009, 3: 10–19

    Article  Google Scholar 

  30. Ren J, Harn L. Ring signature based on ElGamal signature. Lect Notes Comput Sci, 2006, 4136: 445–456

    Article  Google Scholar 

  31. Zhang C L, Liu Y, He D Q. A new verifiable ring signature scheme based on Nyberg-Rueppel scheme. In: Proceedings of ICSP’06, Beijing, 2006

    Google Scholar 

  32. Wang C, Lin C. Efficient signature generation by smart cards. Inf Sci, 2007, 177: 747–754

    Article  MATH  Google Scholar 

  33. Camenisch J, Stadler M. Efficient group signature scheme for large groups. Lect Notes Comput Sci, 1997, 1294: 410–424

    Article  Google Scholar 

  34. Asokan N, Niemi V, Laitinen P. On the usefulness of proof-of-possession. In: Proceedings of the 2nd Annual PKI Research Workshop, Maryland, 2003. 122–127

    Google Scholar 

  35. Meneze A J, van Oorschot P C, Vanstone S A. Handbook of Applied Cryptography. CRC Press, 1997. 87–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Susilo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, J.Y., Chang, KY., Cho, H.S. et al. Collusion-resistant convertible ring signature schemes. Sci. China Inf. Sci. 58, 1–16 (2015). https://doi.org/10.1007/s11432-014-5178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5178-5

Keywords

Navigation