Skip to main content
Log in

Ge surface passivation by GeO2 fabricated by N2O plasma oxidation

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, Ge surface passivation by GeO2 grown by N2O plasma oxidation is presented and experimentally demonstrated. Results show that stoichiometrically GeO2 can be achieved by N2O plasma oxidation at 350°C. The transmission electron microscope observation reveals that the GeO2/Ge interface is automatically smooth and the thickness of GeO2 is ∼0.9 nm with 120 s N2O plasma oxidation. The interface state density of Ge surface after N2O plasma passivation is about ∼ 3×1011 cm−2eV−1. WithGeO2 passivation, the hysteresis of MOS capacitor with Al2O3 as gate dielectric is reduced to ∼55 mV, compared to 130 mV of the untreated one. The Fermi-level at GeO2/Ge interface is unpinned, and the surface potential is effectively modulated by the gate voltage, which is promising for high performance NMOSFETs fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang R, Wu H M, Kang J F, et al. Challenges of 22 nm and beyond CMOS technology. Sci China Ser-F: Inf Sci, 2009, 52: 1491–1533

    Article  Google Scholar 

  2. Chellappan R K, Gajula D R, McNeil D, et al. High temperature thermal ttability of the HfO2/Ge(100) interface as a function of surface preparation studied by synchrotron radiation corelevel photoemission. Appl Surf Sci, 2014, 292: 345–349

    Article  Google Scholar 

  3. Shibayama S, Kato K, Sakashita M, et al. Understanding of interface structures and reaction mechanisms induced by Ge or GeO diffusion in Al2O3/Ge structure. Appl Phys Lett, 2013, 103: 082114

    Article  Google Scholar 

  4. Chang H C, Lin C M, Huang C H, et al. Hysteresis reduction by fluorine incorporation into high permittivity tetragonal ZrO2 on Ge. Appl Phys Lett, 2014, 104: 032902

    Article  Google Scholar 

  5. Seo K, McIntyre P C, Sun S, et al. Chemical states and electronic structure of a HfO2/Ge(001) interface. Appl Phys Lett, 2005, 87: 042902

    Article  Google Scholar 

  6. Oh J. Ge metal oxide semiconductor field effect transistors with optimized Si cap and HfSiO2 high-K metal gate stacks. Curr Appl Phys, 2014, 14: S69–S73

    Article  Google Scholar 

  7. Kim H, McIntyre P C, Chui C O, et al. Interfacial characteristics of HfO2 grown on nitrided Ge(100) substrates by atomic-layer deposition. Appl Phys Lett, 2004, 85: 2902–2904

    Article  Google Scholar 

  8. Gao F, Lee S J, Pan J S, et al. Surface passivation using ultrathin AlNx film for Ge-metal-oxide-semiconductor devices with hafnium oxide gate dielectric. Appl Phys Lett, 2005, 86: 113501

    Article  Google Scholar 

  9. Matsubara H, Sasada T, Takenada M, et al. Evidence of low interface trap density in GeO2/Ge metal-oxide semiconductor structures fabricated by thermal oxidation. Appl Phys Lett, 2008, 93: 032104

    Article  Google Scholar 

  10. Lee C H, Nishimura T, Tabata T, et al. Ge MOSFETs performance: impact of Ge interface passivation. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2010. 416–419

    Google Scholar 

  11. Sioncke S, Vanherle W, Art W, et al. Si cap passivation for Ge nMOS applications. Microelectron Eng, 2013, 109: 46–49

    Article  Google Scholar 

  12. Silva S R M, Rolim G K, Soares G V, et al. Oxygen transport and GeO2 stability during thermal oxidation of Ge. Appl Phys Lett, 2012, 100: 191907

    Article  Google Scholar 

  13. Lee C H, Nishimura T, Saido N, et al. Record-high electron mobility in Ge n-MOSFETs exceeding Si universality. In: Proceedings of IEEE International Electron Devices Meeting, Baltimore, 2009. 457–460

    Google Scholar 

  14. Li X F, Liu X J, Zhang W Q, et al. Comparison of the interfacial and electrical properties of HfAlO films on Ge with S and GeO2 passivation. Appl Phys Lett, 2011, 98: 162903

    Article  Google Scholar 

  15. Kuzum D, Krishnamohan T, Pethe A J, et al. Ge-interface engineering with ozone oxidation for low interface-state density. IEEE Electron Dev Lett, 2008, 29: 328–330

    Article  Google Scholar 

  16. Deng S, Xie Q, Deduytsche D, et al. Effective reduction of fixed charge densities in germanium based metal-oxidesemiconductor devices. Appl Phys Lett, 2011, 99: 052906

    Article  Google Scholar 

  17. Fukuda Y, Yazaki Y, Otani Y, et al. Low-temperature formation of high-quality GeO2 interlayer for high-K gate dielectrics/Ge by electron-cyclotron-resonance plasma techniques. IEEE Trans Electron Dev, 2010, 57: 282–287

    Article  Google Scholar 

  18. Lau WS, Qian PW, Sandler N P, et al. Evidence that N2O is a stronger oxidizing agent than O2 for the post-deposition annealing of Ta2O5 on Si capcitors. Jpn J Appl Phys, 1997, 36: 661–666

    Article  Google Scholar 

  19. Oshima Y, Sun Y, Kuzum D, et al. Chemical bonding, interfaces and defects in hafnium oxide/germanium oxynitride gate stacks on Ge(100). J Electron chem Soc, 2008, 155: G304–G309

    Article  Google Scholar 

  20. Matsubara H, Takenaka M, Takagi S, et al. Interface-controlled self-align source/drain Ge pMOSFETs using thermallyoxidized GeO2 interfacial layers. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2008. 887–880

    Google Scholar 

  21. Batude P, Garros X, Clavelier L, et al. Insights on fundamental mechanisms impacting Ge metal oxide semiconductor capacitors with high-K/metal gate stacks. J Appl Phys, 2007, 102: 345014

    Article  Google Scholar 

  22. Schroder D K. Semiconductor Material and Device Characterization. New York: John Wiley & Sons, 2006. 342–347

    Google Scholar 

  23. Dimoulas A, Tsipas P, Sotiropoulos A, et al. Fermi-level pinning and charge neutrality level in germanium. Appl Phys Lett, 2006 89: 252110

    Article  Google Scholar 

  24. Kuzum D, Park J H, Krihnamohan T, et al. The effect of donor/acceptor nature of interface traps on Ge MOSFET characteristics. IEEE Trans Electron Dev, 2011, 58: 1015–1022

    Article  Google Scholar 

  25. Berglund C N. Surface states at steam-grown silicon-silicon dioxide interfaces. IEEE Trans Electron Dev, 1966, 13: 701–705

    Article  Google Scholar 

  26. Fukuda Y, Okamoto H, Iwasaki T, et al. Surface passivation of p-type Ge substrate with high-quality GeNx layerformed by electron-cyclotron-resonance plasma nitridation at low temperature. Appl Phys Lett, 2011. 99: 132907

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia An, Ming Li or Ru Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, M., An, X., Li, M. et al. Ge surface passivation by GeO2 fabricated by N2O plasma oxidation. Sci. China Inf. Sci. 58, 1–5 (2015). https://doi.org/10.1007/s11432-014-5180-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5180-y

Keywords

Navigation