Skip to main content
Log in

An improved motion compensation method for high resolution UAV SAR imaging

一种改进的适用于高分辨无人机SAR成像的运动补偿方法

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The polynomial and sinusoidal motion errors always exist in the unmanned aero vehicle (UAV) SAR due to the small size and low velocity of the platform, causing serious spectrum compressing/stretching and significant spectral replicas of the azimuth signal. The motion errors induce serious blurring of the SAR image and “ghost targets”, and can hardly be precisely estimated by the conventional motion compensation (MOCO) method. In this paper, an improved MOCO method is proposed to estimate and eliminate the motion errors in the high resolution UAV SAR without high precision inertial navigation system (INS) data. The time domain range walk correction (RWC) operation in the coarse phase error estimation process of the proposed MOCO method is the key operation that ensures the estimation accuracy of the whole MOCO method. Finally, the validity of the improved MOCO method is verified by computer simulations and real UAV SAR data processing.

概要

创新点

由于平台体积小、 速度慢, 无人机SAR受载机机械振动和空气扰动的影响非常大, 导致回波数据的多普勒相位历程中出现多项式型和正弦型相位误差. 这些误差将分别导致图像的严重散焦和虚假目标的产生. 已有的运动补偿方法很难精确地对这些误差进行估计. 因此, 本文提出了一种改进的不依靠高精度惯导数据的运动补偿方法. 此方法直接利用回波数据对这些误差进行精确的估计与补偿. 计算机仿真和无人机SAR实测数据处理验证了此运动补偿方法的有效性.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin Y G, Zhang B C, Jiang H, et al. Multi-channel SAR imaging based on distributed compressive sensing. Sci China Inf Sci, 2012, 55: 245–259

    Article  MathSciNet  Google Scholar 

  2. Liu Y, Wu Q S, Sun G C, et al. Parameter estimation of moving targets in the SAR system with a low PRF sampling rate. Sci China Inf Sci, 2012, 55: 337–347

    Article  MathSciNet  Google Scholar 

  3. Carrara W G, Goodman R S, Majewski R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithm. Boston: Artech House, 1995

    MATH  Google Scholar 

  4. Xing M D, Jiang X W, Wu R B, et al. Motion compensation for UAV SAR based on raw radar data. IEEE Trans Geosci Remot Sens, 2009, 47: 2870–2883

    Article  Google Scholar 

  5. Oliver C, Quegan S. Understanding Synthetic Aperture Radar Images. Norwood: Artech House, 1999

    Google Scholar 

  6. Franceschetti G, Lanari R. Synthetic Aperture Radar Processing. Boca Raton: CRC Press, 1999

    Google Scholar 

  7. Samczynski P, Pietrzyk G, Gorzelanczyk A. Coherent map drift technique. IEEE Trans Geosci Remot Sens, 2010, 48: 1505–1517

    Article  Google Scholar 

  8. González-Partida J T, Almorox-González P, Burgos-Garcia M. SAR system for UAV operation with motion error compensation beyond the resolution cell. Sensors, 2008, 8: 3384–3405

    Article  Google Scholar 

  9. Wahl D E, Eichel P H, Ghiglia D C, et al. Phase gradient autofocus-a robust tool for high resolution phase correction. IEEE Trans Aerosp Electron Syst, 1994, 30: 827–835

    Article  Google Scholar 

  10. Chan H L, Yeo T S. Noniterative quality phase-gradient autofocus (QPGA) algorithm for spotlight SAR imagery. IEEE Trans Geosci Remot Sens, 1998, 36: 1531–1539

    Article  Google Scholar 

  11. Ye W, Yeo T S, Bao Z. Weighted least-squares estimation of phase errors for SAR/ISAR autofocus. IEEE Trans Geosci Remot Sens, 1999, 37: 2487–2494

    Article  Google Scholar 

  12. Câmara de Macedo K A, Scheiber R, Moreira A. An autofocus approach for residual motion errors with application to airborne repeat-pass SAR interferometry. IEEE Trans Geosci Remot Sens, 2008, 46: 3151–3162

    Article  Google Scholar 

  13. Li Y K, Liu C, Wang Y F, et al. A robust motion error estimation method based on raw data. IEEE Trans Geosci Remot Sens, 2012, 50: 2780–2790

    Article  Google Scholar 

  14. Zhang L, Qiao Z J, Xing M D, et al. A robust motion compensation approach for UAV SAR imagery. IEEE Trans Geosci Remot Sens, 2012, 50: 3202–3218

    Article  Google Scholar 

  15. Prats P, Câmara de Macedo K A, Reigber A, et al. Comparison of topography- and aperture-dependent motion compensation algorithms for airborne SAR. IEEE Geosci Remot Sens Lett, 2007, 4: 349–353

    Article  Google Scholar 

  16. Cumming I G, Wong F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Boston: Artech House, 2005. 169–221

    Google Scholar 

  17. Zeng T, Liu L S, Ding Z G. Improved stepped-frequency SAR imaging algorithm with the range spectral-length extension strategy. IEEE J Sel Top Appl Earth Obs Remot Sens, 2012, 5: 1483–1494

    Article  Google Scholar 

  18. Raney R K, Runge H, Bamler R, et al. Precision SAR processing using chirp scaling. IEEE Trans Geosci Remot Sens, 1994, 32: 786–799

    Article  Google Scholar 

  19. Fornaro G. Trajectory deviations in airborne SAR: analysis and compensation. IEEE Trans Aerosp Electron Syst, 1999, 35: 997–1005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZeGang Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, B., Ding, Z., Gao, W. et al. An improved motion compensation method for high resolution UAV SAR imaging. Sci. China Inf. Sci. 57, 1–13 (2014). https://doi.org/10.1007/s11432-014-5189-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5189-2

Keywords

关键词

Navigation