Skip to main content
Log in

In-hand haptic perception in dexterous manipulations

机械手灵巧操作中的触觉感知

  • Research Paper
  • Special Focus on Robot Sensing and Dexterous Operation
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Dexterous in-hand manipulation with multi-finger robotic hands is a hot topic in robotics. Recently many famous multi-finger robotic hands have been developed. Though a lot of research has been done on them; in-hand manipulation is still a challenge. One of its issues lies in the uncertainty of interaction states. In this paper we research robot-object interaction from a novel angle called haptic exploration. This method helps robots acquire the ability to explore the robot-object interaction. In in-hand manipulation tasks, haptic exploration is a process where the robot pushes on in-hand objects slightly in different directions, and meanwhile perceives the haptic feedback to estimate the interaction state. In this paper a new single finger push model is proposed for analyzing the haptic feedback, which is similar to traditional impedance control of robot arm. In this model the stiffness of fingers, the deformation on contact surface, and the change of object’s pos (position and attitude) are considered. Furthermore, a push resistance is given to describe the haptic feedback acquired from a slight push. Finally, real robotic experiments are conducted to verify the feasibility of proposed method.

概要

概要

多指灵巧手的灵巧操作是一个非常重要的研究方向, 其中灵巧手和被操作物体间相对状态的感知是个具有挑战性的研究难题. 本文从灵巧手与物体之间相互作用的角度出发, 提出了一种触觉探索的感知方法. 在该方法中, 灵巧手指尝试沿不同的方向推动物体, 并在此过程中收集相关的触觉信息, 从而推断灵巧手和被操作物体之间的相对状态. 综合考虑手指推动过程中手指关节的刚度, 接触面的形变以及物体位置变化等重要因素, 本文给出了单指推动触觉感知模型, 分析推动方向和触觉反馈之间的联系. 相应的机器人实验结果表明本文提出的方法正确、 有效.

创新点

在机器人灵巧手的研究中提出了触觉探索的感知方法. 该方法将物体和手作为一个感知整体. 并在此基础上, 提出了单指推动的触觉感知模型.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kochan A. Shadow delivers first hand. Indl robot, 2005, 32: 15–16

    Article  Google Scholar 

  2. Lovchik C, Diftler M A. The robonaut hand: a dexterous robot hand for space. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Detroit, 1999. 907–912

    Google Scholar 

  3. Butterfass J, Grebenstein M, Liu H, et al. Dlr-hand ii: next generation of a dextrous robot hand. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seoul, 2001. 109–114

    Google Scholar 

  4. Bicchi A. Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Trans Robotics Automat, 2000, 16: 652–662

    Article  Google Scholar 

  5. Bicchi A, Kumar V. Robotic grasping and contact: a review. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), San Francisco, 2000. 348–353

    Google Scholar 

  6. Himoga K B. Robot grasp synthesis algorithms: a survey. Int J Robot Res, 1996, 15: 230–266

    Article  Google Scholar 

  7. Okamura A M, Smaby N, Cutkosky M R. An overview of dexterous manipulation. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), San Francisco, 2000. 255–262

    Google Scholar 

  8. Khalil F F, Payeur P. Dexterous robotic manipulation of deformable objects with multi-sensory feedback-a review. In: Jimenez A, M Al Hadithi B, eds. Robot Manipulators Trends and Development. Croatia: InTech, 2010. 587–619

    Google Scholar 

  9. Senoo T, Yamakawa Y, Mizusawa S, et al. Skillful manipulation based on high-speed sensorymotor fusion. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Anchorage, 2009. 1611–1612

    Google Scholar 

  10. Li Z, Hsu P, Sastry S. Grasping and coordinated manipulation by a multifingered robot hand. Intl J Robot Res, 1989, 8: 33–50

    Article  Google Scholar 

  11. Furukawa N, Namiki A, Taku S, et al. Dynamic regrasping using a high-speed multifingered hand and a high-speed vision system. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Orlando, 2006. 181–187

    Google Scholar 

  12. Garcia-Rodriguez R, Parra-Vega V. Rolling a dynamic object with a planar soft-fingertip robot arm. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), Tokyo, 2013. 2472–2478

    Google Scholar 

  13. Peters J, Muelling K, Kober J, et al. Robot skill learning. In: Proceedings of European Conference on AI (ECAI), Montpellier, 2012. 40–45

    Google Scholar 

  14. Argall B D, Chernova s, Veloso M, et al. A survey of robot learning from demonstration. Robot Auton Syst, 2009, 57: 469–483

    Article  Google Scholar 

  15. Schaedle S, Ertel E. Dexterous manipulation using hierarchical reinforcement learning. In: Proceedings of the IEEE International Conference on Robotics and Automation Workshop, Karlsruhe, 2013. 1–5

    Google Scholar 

  16. Kalakrishnan M, Righetti L, Pastor P, et al. Learning force control policies for compliant manipulation. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), San Francisco, 2011. 4639–4644

    Google Scholar 

  17. Baier-Lowenstein T, Zhang J. Learning to grasp everyday objects using reinforcement-learning with automatic value cut-off. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), San Diego, 2007. 1551–1556

    Google Scholar 

  18. Pelossof R, Miller A, Allen P. An svm learning approach to robotic grasping. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Barcelona, 2004. 3512–3518

    Google Scholar 

  19. Gorce P, Rezzoug N. A method to learn hand grasping posture from noisy sensing information. Robotica, 2004, 22: 309–318

    Article  Google Scholar 

  20. Kroemer O, Detry P, Piater J, et al. Combining active learning and reactive control for robot grasping. Robot Auton Syst, 2010, 58: 1105–1116

    Article  Google Scholar 

  21. Robles-De-La-Torre G, Hayward V. Force can overcome object geometry in the perception of shape through active touch. Nature, 2001, 412: 445–448

    Article  Google Scholar 

  22. Roberts K S. Robot active touch exploration: constraints and strategies. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Tsukuba, 1990. 980–985

    Chapter  Google Scholar 

  23. Allen P K, Michelman P. Acquisition and interpretation of 3-d sensor data from touch. IEEE Trans Robot Automat, 1990, 6: 397–404

    Article  Google Scholar 

  24. Lederman S J, Klatzky R L, Hamilton C L, et al. Perceiving roughness via a rigid probe: psychophysical effects of exploration speed and mode of touch. Electron J Haptics Res, 1999, 1

    Google Scholar 

  25. Yoshioka T, Bensmaia S, Craig J, et al. Texture perception through direct and indirect touch: an analysis of perceptual space for tactile textures in two modes of exploration. Somatosens Motor Res, 2007, 24: 53–70

    Article  Google Scholar 

  26. Lynch K M. The mechanics of fine manipulation by pushing. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Ottawa, 1992. 2269–2276

    Google Scholar 

  27. Namiki A, Imai Y, Ishikawa M, et al. Development of a high-speed multifingered hand system and its application to catching. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), Nevada, 2003. 2666–2671

    Google Scholar 

  28. Flash T. The control of hand equilibrium trajectories in multi-joint arm movements. Biol Cybern, 1987, 57: 257–274

    Article  MATH  Google Scholar 

  29. Hogan N. The mechanics of multi-joint posture and movement control. Biol Cybern, 1985, 52: 315–331

    Article  MATH  Google Scholar 

  30. Asada H, Slotine J-J E. Robot Analysis and Control. New York: Wiley, 1986

    Google Scholar 

  31. Kim B, Park J, Park S, et al. Impedance learning for robotic contact tasks using natural actor-critic algorithm. IEEE Trans Syst Man Cybern Part B-Cybern, 2010, 40: 433–443

    Article  Google Scholar 

  32. Lipkin H, Patterson T. Generalized center of compliance and stiffness. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), Raleigh, 1992. 1251–1256

    Google Scholar 

  33. Inoue T, Hirai S. Elastic model of deformable fingertip for softfingered manipulation. IEEE Trans Robot, 2006, 22: 1273–1279

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JunHu He or JianWei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Zhang, J. In-hand haptic perception in dexterous manipulations. Sci. China Inf. Sci. 57, 1–11 (2014). https://doi.org/10.1007/s11432-014-5216-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5216-3

Keywords

关键词

Navigation