Skip to main content
Log in

Adaptive mode switching of hypersonic morphing aircraft based on type-2 TSK fuzzy sliding mode control

基于二型TSK模糊滑模控制的可变翼高超声速飞行器自适应模态切换

  • Research Paper
  • Special Focus on Advanced Nonlinear Control of Hypersonic Flight Vehicles
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper presents a novel adaptive mode switching scheme for hypersonic morphing aircraftwith retracted winglets based on type-2 Takagi-Sugeno-Kang (TSK) fuzzy sliding mode control. For each ofretracting and stretching modes, a specific sliding mode controller has been adopted. Drawing upon input/outputlinearization to globally linearize the nonlinear model of the hypersonic aircraft at first, a type-2 TSK fuzzylogic system is devised for robust mode switching between these sliding mode controllers. For rapid stabilizationof the system, the adaptive law for mode switching is designed using a direct constructive Lyapunov analysis.Simulation results demonstrate the stability and smooth transition using the proposed switched control scheme.

创新点

本文提出一种新的基于二型TSK模糊滑模控制的可变翼高超声速飞行器自适应模态切换方法。对于小翼收回和伸出两个模态, 采用滑模控制使其稳定。对于小翼伸缩的切换过程, 首先利用输入输出反馈线性化使飞行器的非线性模型精确线性化, 然后设计二型TSK模糊逻辑系统使小翼收回和伸出两个模态的滑模控制器实现平滑切换。为了使系统能够快速稳定, 利用李雅普诺夫稳定性理论设计模态切换的自适应律。仿真结果表明本文所提出的切换控制方法能够实现模态切换的稳定性和平滑性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu B, Shi Z K. An Overview on flight dynamics and control approaches for hypersonic vehicles. Sci China Inf Sci, 2015, 58: 070201

    Article  Google Scholar 

  2. Wang Q, Stengel R F. Robust nonlinear control of a hypersonic aircraft. J Guid Control Dyn, 2000, 23: 577–585

    Article  Google Scholar 

  3. Xu H J, Mirmirani M D, Ioannou P A. Adaptive sliding mode control design for a hypersonic flight vehicle. J Guid Control Dyn, 2004, 27: 829–838

    Article  Google Scholar 

  4. Guo C, Liang X G, Wang J W. Multi-model soft switching tracking control and robust least-squares weighted control allocation for near space interceptor. In: Proceedings of the 33rd Chinese Control Conference, Nanjing, 2014. 4210–4215

    Google Scholar 

  5. Chen M, Wu Q, Jiang C, et al. Guaranteed transient performance based control with input saturation for near space vehicles. Sci China Inf Sci, 2014, 57: 052204

    MathSciNet  Google Scholar 

  6. Xu B, Gao D, Wang S. Adaptive neural control based on HGO for hypersonic flight vehicles. Sci China Inf Sci, 2011, 54: 511–520

    Article  MATH  MathSciNet  Google Scholar 

  7. Xu B. Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity. Nonlinear Dyn, 2015, 80: 1509–1520

    Article  Google Scholar 

  8. Xu B, Huang X, Wang D, et al. Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation. Asian J Control, 2014, 16: 162–174

    Article  MATH  MathSciNet  Google Scholar 

  9. Huang Y, Sun C, Qian C, et al. Non-fragile switching tracking control for a flexible air-breathing hypersonic vehicle based on polytopic LPV model. Chin J Aeronaut, 2013, 26: 948–959

    Article  Google Scholar 

  10. Zhang R, Sun C, Zhang J, et al. Second-order terminal sliding mode control for hypersonic vehicle in cruising flight with sliding mode disturbance observer. J Control Theory Appl, 2013, 11: 299–305

    Article  Google Scholar 

  11. Zhang R, Wang L, Zhou Y. On-line RNN compensated second order nonsingular terminal sliding mode control for hypersonic vehivle. Int J Intel Comput Cybern, 2012, 5: 186–205

    Article  MathSciNet  Google Scholar 

  12. Wang J, Zone Q, Su R, et al. Continuous high order sliding mode controller design for a flexible air-breathing hypersonic vehicle. ISA Trans, 2014, 53: 690–698

    Article  Google Scholar 

  13. Zong Q, Wang J, Tian B, et al. Quasi-continuous High-order sliding mode controller and observer design for flexible hypersonic vehicle. Aerosp Sci Technol, 2013, 27: 127–137

    Article  Google Scholar 

  14. Taheri B, Case D, Richer E. Force and stiffness backstepping-sliding mode controller for pneumatic cylinders. IEEE/ASME Trans Mechatron, 2014, 19: 1799–1809

    Article  Google Scholar 

  15. Ren Q, Balazinski M, Baron L. Type-2 TSK fuzzy logic system and its type-1 counterpart. Int J Comput Appl, 2011, 20: 8–13

    Google Scholar 

  16. Zheng G, Wang J, Jiang L. Research on type-2 TSK fuzzy logic systems. Fuzzy Info Eng, 2009, 2: 491–500

    Article  Google Scholar 

  17. Biglarbegian M, Melek W W, Mendel M J. On the stability of interval type-2 TSK fuzzy logic control systems. IEEE Trans Syst Man Cybern Part B-Cybern, 2010, 40: 798–818

    Article  Google Scholar 

  18. Boumella N, Djouanim K, Boulemden M. A robust interval type-2 TSK fuzzy logic system design based on chebyshev fitting. Int J Control Autom Syst, 2012, 10: 727–736

    Article  Google Scholar 

  19. Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern, 1985, 15: 116–132

    Article  MATH  Google Scholar 

  20. Gao D, Sun Z. Fuzzy tracking control design for hypersonic vehicles via T-S model. Sci China Inf Sci, 2011, 54: 521–528

    Article  MATH  MathSciNet  Google Scholar 

  21. Gao D, Sun Z, Du T. Dynamic surface control for hypersonic aircraft using fuzzy logic system. In: Proceedings of IEEE International Conference on Automation and Logistics, Jinan, 2007. 2314–2319

    Google Scholar 

  22. Li H, Pan Y, Yu Z, et al. Fuzzy output-feedback control for non-linear systems with input time-varying delay. IET Control Theory Appl, 2014, 8: 738–745

    Article  MathSciNet  Google Scholar 

  23. Jafarzadeh S, Fadali M S. On the Stability and control of continuous-time TSK fuzzy systems. IEEE Trans Cybern, 2013, 43: 1073–1087

    Article  Google Scholar 

  24. Saltzman J E, Wang K C, Iliff W K. In-flight subsonic lift and drag characteristics unique to blunt-based lifting reentry vehicles. AIAA J Spacecraft Rocket, 2007, 44: 299–309

    Article  Google Scholar 

  25. Shaughnessy J D, Pinckney S Z, Mcminn J D, et al. Hypersonic vehicle simulation model: winged-cone configuration. NASA Langley Research Center, 1990

    Google Scholar 

  26. Hwang J H, Kwak H J, Park G T. Adaptive interval type-2 fuzzy sliding mode control for unknown chaotic system. Nonlinear Dyn, 2011, 63: 491–502

    Article  MathSciNet  Google Scholar 

  27. Mendel M J. General type-2 fuzzy logic systems made simple: a tutorial. IEEE Trans Fuzzy Syst, 2014, 22: 1162–1182

    Article  Google Scholar 

  28. Wu D. Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: overview and comparisons. IEEE Trans Fuzzy Syst, 2013, 21: 80–93

    Article  Google Scholar 

  29. Mendel M J. Uncertain Rule-based Fuzzy Logic Systems: Introduction and New Directions. Upper Saddle River: Prentice Hall, 2001

    Google Scholar 

  30. Dou G H, Gao Z H. Simulation and design of fade-out devices. Sci Technol Eng, 2012, 12: 1671–1815

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, X., Fidan, B., Jiang, J. et al. Adaptive mode switching of hypersonic morphing aircraft based on type-2 TSK fuzzy sliding mode control. Sci. China Inf. Sci. 58, 1–15 (2015). https://doi.org/10.1007/s11432-015-5349-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-015-5349-z

Keywords

关键词

Navigation