Skip to main content
Log in

Single event upset rate modeling for ultra-deep submicron complementary metal-oxide-semiconductor devices

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Based on the integral method of single event upset (SEU) rate and an improved charge collection model for ultra-deep submicron complementary metal-oxide-semiconductor (CMOS) devices, three methods of SEU rate calculation are verified and compared. The results show that the integral method and the figure of merit (FOM) methods are basically consistent at the ultra-deep submicron level. By proving the validity of the carrier collection model considering charge sharing, the applicability of two FOM methods is verified, and the trends of single-bit and multiple-bit upset rates for ultra-deep submicron CMOS are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McMorrow D, Khachatrian A, Roche N J-H, et al. Single-Event upsets in substrate-etched CMOS SOI SRAMs using ultraviolet optical pulses with sub-Micrometer spot size. IEEE Trans Nucl Sci, 2013; 60: 4184–4191

    Article  Google Scholar 

  2. He Y B, Chen S M. Comparison of heavy-ion induced SEU for D- and TMR-flip-flop designs in 65-nm bulk CMOS technology. Sci China Inf Sci, 2014, 57: 102405

    Google Scholar 

  3. Wang Z M, Yao Z B, Guo H X, et al. Bitstream decoding and SEU-induced failure analysis in SRAM-based FPGAs. Sci China Inf Sci, 2012; 55: 971–982

    Article  Google Scholar 

  4. Moukhtari I E, Pouget V, Larue C, et al. Impact of negative bias temperature instability on the single-event upset threshold of a 65 nm SRAM cell. Microelectron Rel, 2013; 53: 1325–1328

    Article  Google Scholar 

  5. Petersen E L, Koga R, Shoga M A, et al. The single event revolution. IEEE Trans Nucl Sci, 2013; 60: 1824–1835

    Article  Google Scholar 

  6. Raine M, Hubert G, Paillet P, et al. Implementing realistic heavy ion tracks in a SEE prediction tool: comparison between different approaches. IEEE Trans Nucl Sci, 2012; 59: 950–957

    Article  Google Scholar 

  7. Amusan O A, Witulski A F, Massengill LW, et al. Charge collection and charge sharing in a 130 nm CMOS technology. IEEE Trans Nucl Sci, 2006; 53: 3253–3258

    Article  Google Scholar 

  8. Amusan O A, Massengill L W, Baze M P, et al. Single event upsets in deep-submicrometer technologies due to charge sharing. IEEE Trans Dev Mater Rel, 2008; 8: 582–589

    Article  Google Scholar 

  9. Blum D R. Hardened by design approaches for mitigating transient faults in memory-based systems. Dissertation for the Doctoral Degree. Pullman: Washington State University, 2007

    Google Scholar 

  10. Tipton A D, Pellish J A, Reed R A, et al. Multiple-bit upset in 130 nm CMOS technology. IEEE Trans Nucl Sci, 2006; 53: 3259–3264

    Article  Google Scholar 

  11. Connel L W, McDaniel P J, Prinja A K, et al. Modeling the heavy ion upset cross section. IEEE Trans Nucl Sci, 1995; 42: 73–82

    Article  Google Scholar 

  12. Connell L W, Sexton F W, Prinja A K. Further development of the heavy ion cross section for single event upset: model (HICUP). IEEE Trans Nucl Sci, 1995; 42: 2026–2034

    Article  Google Scholar 

  13. Foro L L, Touboul A D,Wrobel F, et al. A simple method for assessing power devices sensitivity to SEEs in atmospheric environment. IEEE Trans Nucl Sci, 2013; 60: 2559–2566

    Article  Google Scholar 

  14. Warren K W, Wilkinson J D, Weller R A, et al. Predicting neutron induced soft error rates: evaluation of accelerated ground based test methods. In: Proceedings of IEEE International Reliability Physics Symposium, Phoenix, 2008. 473–477

    Google Scholar 

  15. Warren K M, Sierawski B D, Reed R A, et al. Monte-Carlo based on-orbit single event upset rate prediction for a radiation hardened by design latch. IEEE Trans Nucl Sci, 2007; 54: 2419–2425

    Article  Google Scholar 

  16. Warren K M, Weller R A, Sierawski B D, et al. Application of RADSAFE to model the single event upset response of a 0.25 µm CMOS SRAM. IEEE Trans Nucl Sci, 2007; 54: 898–903

    Article  Google Scholar 

  17. Warren K M, Sternberg A L, Weller R A, et al. Integrating circuit level simulation and Monte-Carlo radiation transport code for single event upset analysis in SEU hardened circuitry. IEEE Trans Nucl Sci, 2008; 55: 2886–2894

    Article  Google Scholar 

  18. Hubert G, Duzellier S, Inguimbert C, et al. Operational SER calculations on the SAC-C orbit using the multi-scales single event phenomena predictive platform. IEEE Trans Nucl Sci, 2009; 56: 3032–3042

    Article  Google Scholar 

  19. Petersen E L. Interpretation of heavy ion cross section measurements. IEEE Trans Nucl Sci, 1996; 43: 952–959

    Article  Google Scholar 

  20. Petersen E L. The SEU figure of merit and proton upset rate calculations. IEEE Trans Nucl Sci, 1998; 45: 2550–2562

    Article  Google Scholar 

  21. Roche P, Gasiot G, Uznanski S, et al. A commercial 65nm CMOS technology for space applications: heavy ion, proton and gamma test results and modeling. In: Proceedings of European Conference on Radiation and Its Effects on Components and Systems, Bruges, 2009. 456–464

    Google Scholar 

  22. Petersen E L, Shapiro P, Adams J H, et al. Calculation of cosmic-ray induced soft upsets and scaling in VLSI devices. IEEE Trans Nucl Sci, 1982; 29: 2055–2063

    Article  Google Scholar 

  23. Hubert G, Bourdarie S, Artola L, et al. Multi-scale modeling to investigate the single event effects for space missions. Acta Astronaut, 2011; 69: 526–536

    Article  Google Scholar 

  24. Hazucha P, Svensson C. Impact of CMOS technology scaling on the atmospheric neutron soft error rate. IEEE Trans Nucl Sci, 2000; 47: 2586–2594

    Article  Google Scholar 

  25. Amusan O A, Massengill L W, Baze M P, et al. Single event upsets in deep-submicrometer technologies due to charge sharing. IEEE Trans Dev Mater Rel, 2008; 8: 582–589

    Article  Google Scholar 

  26. Giot D, Roche P, Gasiot G, et al. Multiple-bit upset analysis in 90 nm srams: heavy ions testing and 3d simulations. IEEE Trans Nucl Sci, 2007; 54: 904–911

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Chen, H., Sun, P. et al. Single event upset rate modeling for ultra-deep submicron complementary metal-oxide-semiconductor devices. Sci. China Inf. Sci. 59, 042402 (2016). https://doi.org/10.1007/s11432-015-5362-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-015-5362-2

Keywords

Navigation