Abstract
A technique is developed to derive two-dimensional maps of total electron content (TEC) over China and adjacent areas using Global Navigation Satellite System (GNSS) data from the Crustal Movement Observation Network of China (CMONOC) and the International Global Navigation Satellite System Service (IGS). A revised self-calibration of pseudo-range errors (SCORE) algorithm is used to derive the TEC and to determine the Differential Code Biases (DCBs) simultaneously. The accuracy and validity of this technique is verified in two ways. Firstly, the estimated TEC is compared with the results derived using DCBs from Center for Orbit Determination of Europe (CODE) under different solar activity conditions and seasons; secondly, sample TEC along the receiver-to-satellite ray paths are simulated by NeQuick model and are reprocessed by this TEC derivation technique to make the accuracy test. Two-dimensional maps of vertical TEC of ionospheric pierce points (IPPs) are obtained accordingly with a time resolution of 30 s. The data interpolating empirical orthogonal functions (DINEOF) technique is then used to make the extrapolation for the unknown or missing data points. The optimal EOF modes for data reconstruction are specified via cross-validation method. The regional TEC distribution over China and adjacent areas is scaled into grid size of 1° × 1° for each 5 min, which can well reflect the characteristic of large-scale regional variations and temporal evolution as well as the small-scale local features of ionosphere.
创新点
1. 利用中国及周边区域的地基GNSS观测数据进行TEC解算, 并采用伪距误差自校正技术来计算硬件偏差, 得到高精度TEC星下点数据。
2. 采用经验正交函数法插值法构建覆盖中国及周边区域的高分辨率TEC地图
Similar content being viewed by others
References
Wilson B D, Mannucci A J, Edwards C D. Subdaily northern hemisphere ionospheric maps using an extensive network of GPS receivers. Radio Sci, 1995, 30: 639–648
Komjathy A. Global ionospheric total electron content mapping using the global positioning system. Dissertation of Doctoral Degree. The University of New Brunswick, Fredericton, New Brunswick, Canada, 1997
Mannucci A J, Wilson B D, Yuan D N, et al. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci, 1998, 33: 565–582
Iijima B A, Harris I L, Ho C M, et al. Automated daily process for global ionospheric total electron content maps and satellite ocean altimeter ionospheric calibration based on Global Positioning System data. J Atmos Sol Terr Phys, 1999, 61: 1205–1218
Orús R, Hernández-Pajares M, Juan J M, et al. Improvement of global ionospheric VTEC maps by using kriging interpolation technique. J Atmos Sol Terr Phys, 2005, 67: 1598–1609
Hernández-Pajares M, Juan J M, Sanz J, et al. The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod, 2009, 83: 263–275
Zhang A E, Zhang D, Ridley A, et al. A global model: empirical orthogonal function analysis of total electron content 1999-2009 data. J Geophys Res, 2012, 117: A03328
Schaer S. Mapping and predicting the Earth’s ionosphere using the Global Positioning System. Geod Geophys Arb Schweiz, 1999, 59
Ho C M, Mannucci A J, Lindqwister U J, et al. Global ionosphere perturbations monitored by the worldwide GPS network. Geophys Res Lett, 1996, 23: 3219–3222
Feltens J, Schaer S. IGS products for the ionosphere IGS Position Paper. In: Proceedings of the IGS analysis centers workshop, Darmstadt, 1998. 225–232
Feltens J. Development of a new three-dimensional mathematical ionosphere model at European Space Agency/ European Space Operations Centre. Space Weather, 2007, 5: S12002
Hernández-Pajares M, Juan J M, Sanz J. High resolution TEC monitoring method using permanent ground GPS receivers. Geophys Res Lett, 1997, 24: 1643–1646
Rideout W, Coster A. Automated GPS processing for global total electron content data. GPS Solut, 2006, 10: 219–228
Wan W, Ding F, Zhang M, et al. Modeling the global ionospheric total electron content with empirical orthogonal function analysis. Sci China Tech Sci, 2012, 55: 1161–1168
Mukhtarov P, Pancheva D, Andonov B, et al. Global TEC maps based on GNSS data: 1. Empirical background TEC model. J Geophys Res, 2013, 118: 4594–4608
Mukhtarov P, Pancheva D, Andonov B, et al. Global TEC maps based on GNSS data: 2. Model evaluation. J Geophys Res, 2013, 118: 4609–4617
Fuller-Rowell T, Araujo-Pradere E, Minter C, et al. US-TEC: a new data assimilation product from the Space Environment Center characterizing the ionospheric total electron content using real-time GPS data. Radio Sci, 2006, 41: RS6003
Otsuka Y, Ogawa T, Saito A, et al. A new technique for mapping of total electron content using GPS network in Japan. Earth Planets Space, 2002, 54: 63–70
Mao T, Wan W, Yue X, et al. An empirical orthogonal function model of total electron content over China. Radio Sci, 2008, 43: RS2009
Bouya Z, Terkildsen M, Neudegg D. Regional GPS-based ionospheric TEC model over Australia using spherical cap harmonic analysis. In: Proceedings of 38th COSPAR Scientific Assembly, Bremen, 2010. 991–993
Ghoddousi-Fard R, Héroux P, Danskin D, et al. Developing a GPS TEC mapping service over canada. Space Weather, 2011, 9: S06D11
Liu J, Chen R, Wang Z, et al. Spherical cap harmonic model for mapping and predicting regional TEC. GPS Solut, 2011, 15: 109–119
Ping J, Kono Y, Matsumoto K, et al. Regional ionosphere map over Japanese islands. Earth Planet Space, 2002, 54: 13–16
Stolle C, Schl¨ uter S, Heise S, et al. GPS ionospheric imaging of the north polar ionosphere on 30 October 2003. Adv Space Res, 2005, 36: 2201–2206
Sayin I, Arikan F, Arikan O. Regional TEC mapping with Random Field Priors and Kriging. Radio Sci, 2008, 43: RS5012
Habarulema J B, McKinnell L A, Opperman B. Regional GPS TEC modeling; attempted spatial and temporal extrapolation of TEC using neural networks. J Geophys Res, 2011, 116: A04314
Tsugawa T, Saito A, Otsuka Y, et al. Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space, 2011, 63: 875–879
Otsuka Y, Suzuki K, Nakagawa S, et al. GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann Geophys, 2013, 31: 163–172
Liu J, Chen R, An J, et al. Spherical cap harmonic analysis of the Arctic ionospheric TEC for one solar cycle. J Geophys Res, 2014, 119: 601–619
Huang Z, Yuan H. Research on regional ionospheric TEC modeling using RBF neural network. Sci China Tech Sci, 2014, 57: 1198–1205
Yu T, Mao T, Wang Y, et al. Using the GPS observations to reconstruct the ionosphere three-dimensionally with an ionospheric data assimilation and analysis system (IDAAS). Sci China Tech Sci, 2014, 57: 2210–2219
Aa E, Huang W, Yu S, et al. A regional ionospheric TEC mapping technique over china and adjacent areas on the basis of data assimilation. J Geophys Res, 2015, 120, doi: 10.1002/2015JA021140
Dow J M, Neilan R E, Rizos C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geodesy, 2009, 83: 191–198
Biship G, Mezzella A, Holland E, et al. Algorithms that use the ionosphere to control GPS errors. In: Proceedings of IEEE Position Location and Navigation Symposium, Atlanta, 1996. 145–152
Ma G, Maruyama T. Derivation of TEC and estimation of instrumental biases from GEONET in Japan. Ann Geophys, 2003, 21: 2083–2093
Mazzella A, Holland E, Andreasen A, et al. Autonomous estimation of plasmasphere content using GPS measurements. Radio Sci, 2002, 37: 41–45
Zhang W, Zhang D H, Xiao Z. The influence of geomagnetic storms on the estimation of GPS instrumental biases. Ann Geophys, 2009, 27: 1613–1623
Li Q, Zhang D H. Methods of estimation of GPS instrumental bias from single site’s GPS data and comparative study of results. Acta Sci Nat Univ Pekin, 2007, 44: 149–156
Li L, Zhang D H, Zhang S R, et al. Influences of the day-night differences of ionospheric variability on the estimation of GPS differential code bias. Radio Sci, 2015, 50: 339–353
Zhang D H, Zhang W, Li Q, et al. Accuracy analysis of the GPS instrumental bias estimated from observations in middle and low latitudes. Ann Geophys, 2010, 28: 1571–1580
Zhang D H, Shi H, Jin Y, et al. The variation of the estimated GPS instrumental bias and its possible connection with ionospheric variability. Sci China Tech Sci, 2014, 57: 67–79
Hochegger G, Nava B, Radicella S, et al. A family of ionospheric models for different uses. Phys Chem Earth C, 2000, 25: 307–310
Radicella S M, Leitinger R. The evolution of the DGR approach to model electron density profiles. Adv Space Res, 2011, 27: 35–40
Georgiadou Y. Modeling the Ionosphere for an Active Control Network of GPS Station. LGR-series, Vol 7. Delft Geodetic Computing Centre. Delft University of Technology, 1994
Beckers J M, Alvera-Azcárate A, Barth A, et al. Self consistent and computationally efficient EOF calculations from incomplete oceanographic data sets. In: Proceedings of EGS-AGU-EUG Joint Assembly, Nice, 2003. 3675
Toumazou V, Cretaux J F. Using a Lanczos eigensolver in the computation of empirical orthogonal functions. Mon Weather Rev, 2001, 129: 1243–1250
Beckers J M, Barth A, Alvera-Azc´ arate A. DINEOF reconstruction of clouded images including error maps-application to the Sea-Surface Temperature around Corsican Island. Ocean Sci, 2006, 2: 183–199
Alvera-Azcárate A, Barth A, Beckers J M, et al. Multivariate reconstruction of missing data in sea surface temperature, chlorophyll, and wind satellite fields. J Geophys Res, 2007, 112: C03008
Alvera-Azcárate A, Barth A, Sirjacobs D, et al. Enhancing temporal correlations in EOF expansions for the reconstruction of missing data using DINEOF. Ocean Sci Discuss, 2009, 6: 1547–1568
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ercha, A., Huang, W., Liu, S. et al. A regional ionospheric TEC mapping technique over China and adjacent areas: GNSS data processing and DINEOF analysis. Sci. China Inf. Sci. 58, 1–11 (2015). https://doi.org/10.1007/s11432-015-5399-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11432-015-5399-2