Skip to main content
Log in

Controlling the key by choosing the detection bits in quantum cryptographic protocols

在量子密码协议中通过选择检测比特位置以控制密钥

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Eavesdropping detection is an indispensable process of most quantum cryptographic protocols. By publishing and comparing part of the shared bits, called as detection bits, the participants can check whether there exists an eavesdropper. Generally, the detection bits are chosen randomly. Consequently, the secret bits, i.e., the rest bits, are also random. Then, what if the detection bits are chosen non-randomly? Can the participant who chooses the detection bits make the secret bits to be a predetermined string he expected? This paper focuses on the participants’ key control capability when they choose the detection bits selectively in two-party quantum communication protocols. Concretely, we analyze the participants’ key control capability in different situations of different proportions of the detection bits. And we prove that the participants can predetermine, with high probability, any part of the secret bits of which the length is smaller than that of the detection bits. The above result has various potential applications in quantum cryptographic protocols. Obviously, utilizing this non-random selection of the detection bits, one can realize the function of a deterministic quantum key distribution protocol through a random one if the number of the detection bits is not smaller than that of the secret bits. What is more, we find that quite a few quantum key agreement protocols cannot guarantee the fairness of the key in the sense that the participant who chooses the detection bits can control the key somewhat.

摘要

创新点

在量子密钥分发( Quantum Key Distribution, QKD) 协议中, 参与者对检测比特的选择一般都是随机的, 这样产生的密钥也是随机的。那么如果不随机选择检测比特会怎样呢? 本文分析了当参与者不随机选择检测比特时其对密钥的控制能力。研究表明, 当检测比特所占比例超过1/2时, 参与者可以以非常高的概率完全控制密钥。同时, 本文还研究了这种不随机选择检测比特的检测窃听方式在确定性QKD和量子密钥协商中的应用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wiesner S. Conjugate coding. SIGACT News, 1983, 15: 78–88

    Article  Google Scholar 

  2. Bennett C H, Brassard G. Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers: Systems and Signal Processing, Bangalore, 1984. 175–179

    Google Scholar 

  3. Ekert A K. Quantum cryptography based on Bell theorem. Phys Rev Lett, 1991, 67: 661–663

    Article  MATH  MathSciNet  Google Scholar 

  4. Bennett C H. Quantum cryptography using any two nonorthogonal states. Phys Rev Lett, 1992, 68: 3121–3124

    Article  MATH  MathSciNet  Google Scholar 

  5. Goldenberg L, Vaidman L. Quantum cryptography based on orthogonal states. Phys Rev Lett, 1995, 75: 1239–1243

    Article  MATH  MathSciNet  Google Scholar 

  6. Zhang C M, Song X T, Treeviriyanupab P, et al. Delayed error verification in quantum key distribution. Chin Sci Bull, 2014, 59: 2825–2828

    Article  Google Scholar 

  7. Lin C Y, Hwang T. CNOT extraction attack on “quantum asymmetric cryptography with symmetric keys”. Sci China-Phys Mech Astron, 2014, 57: 1001–1003

    Article  Google Scholar 

  8. Su X L. Applying Gaussian quantum discord to quantum key distribution. Chin Sci Bull, 2014, 59: 1083–1090

    Article  Google Scholar 

  9. Liu B, Gao F, Qin S J, et al. Choice of measurement as the secret. Phys Rev A, 2014, 89: 042318

  10. Hillery M, Buzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  MathSciNet  Google Scholar 

  11. Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 5: 162–168

    Article  Google Scholar 

  12. Long G L, Liu X. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302

    Article  Google Scholar 

  13. Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902

  14. Cai Q Y, Li B W. Deterministic secure communication without using entanglement. Chin Phys Lett, 2004, 21: 601–603

    Article  Google Scholar 

  15. Zou X F, Qiu D W. Three-step semiquantum secure direct communication protocol. Sci China-Phys Mech Astron, 2014, 57: 1696–1702

    Article  Google Scholar 

  16. Zheng C, Long G F. Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci China-Phys Mech Astron, 2014, 57: 1238–1243

    Article  Google Scholar 

  17. Chang Y, Xu C X, Zhang S B, et al. Quantum secure direct communication and authentication protocol with single photons. Chin Sci Bull, 2013, 58: 4571–4576

    Article  Google Scholar 

  18. Chang Y, Xu C X, Zhang S B, et al. Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin Sci Bull, 2014, 59: 2541–2546

    Article  Google Scholar 

  19. Lo H K, Chau H F. Is quantum bit commitment really possible? Phys Rev Lett, 1997, 78: 3410–3413

    Article  Google Scholar 

  20. Mayers D. Unconditionally secure quantum bit commitment is impossible. Phys Rev Lett, 1997, 78: 3414–3417

    Article  Google Scholar 

  21. Gao F, Fang W, Wen Q Y. Minimum best success probability by classical strategies for quantum pseudo-telepathy. Sci China-Phys Mech Astron, 2014, 57: 1244–1249

    Article  Google Scholar 

  22. Buhrman H, Chandran N, Fehr S, et al. Position-based quantum cryptography: impossibility and constructions. In: Proceedings of 31st International Cryptology Conference, Santa Barbara, 2011. 429–446

    Google Scholar 

  23. Giovannetti V, Lloyd S, Maccone L. Quantum private queries. Phys Rev Lett, 2008, 100: 230502

    Article  MathSciNet  Google Scholar 

  24. Gao F, Liu B, Huang W, et al. Postprocessing of the oblivious key in quantum private query. IEEE J Sel Top Quantum Electron, 2015, 21: 6600111

  25. Liu B, Gao F, Jia H Y, et al. Efficient quantum private comparison employing single photons and collective detection. Quantum Inf Process, 2013, 12: 887–897

    Article  MATH  MathSciNet  Google Scholar 

  26. Huang W, Wen Q Y, Liu B, et al. Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels. Sci China-Phys Mech Astron, 2013, 56: 1670–1678

    Article  Google Scholar 

  27. Liu Y M. Virtual-photon-induced entanglement with two nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity. Sci China-Phys Mech Astron, 2013, 56: 2138–2142

    Article  Google Scholar 

  28. Shi X, Wei L F, Oh C H. Quantum computation with surface-state electrons by rapid population passages. Sci China-Phys Mech Astron, 2014, 57: 1718–1724

    Article  Google Scholar 

  29. Ye T Y. Information leakage resistant quantum dialogue against collective noise. Sci China-Phys Mech Astron, 2014, 57: 2266–2275

    Article  Google Scholar 

  30. Xu S J, Chen X B, Niu X X, et al. High-efficiency quantum steganography based on the tensor product of Bell states. Sci China-Phys Mech Astron, 2013, 56: 1745–1754

    Article  Google Scholar 

  31. Wang M M, Chen X B, Yang Y X. A blind quantum signature protocol using the GHZ states. Sci China-Phys Mech Astron, 2013, 56: 1636–1641

    Article  Google Scholar 

  32. Shi J J, Shi R H, Guo Y, et al. Batch proxy quantum blind signature scheme. Sci China-Phys Mech Astron, 2013, 56: 052115

    MathSciNet  Google Scholar 

  33. Lo H K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 1999, 283: 2050–2056

    Article  Google Scholar 

  34. Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol. Phys Rev Lett, 2000, 85: 441–444

    Article  Google Scholar 

  35. Zhou N, Zeng G, Xiong J. Quantum key agreement protocol. Electron Lett, 2004, 40: 1149–1150

    Article  Google Scholar 

  36. Chong S K, Tsai C W, Hwang T. Improvement on “quantum key agreement protocol with maximally entangled states”. Int J Theor Phys, 2011, 50: 1793–1802

    Article  MATH  MathSciNet  Google Scholar 

  37. Xu G B, Wen Q Y, Gao F, et al. Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf Process, 2014, 13: 2587–2594

    Article  MATH  MathSciNet  Google Scholar 

  38. Chernoff H. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann Math Stat, 1952, 23: 493–507

    Article  MATH  MathSciNet  Google Scholar 

  39. Mitchell C J, Ward M, Wilson P. Key control in key agreement protocols. Electron Lett, 1998, 34: 980–981

    Article  Google Scholar 

  40. Ateniese G, Steiner M, Tsudik G. New multiparty authentication services and key agreement protocols. IEEE J Sel Areas Commun, 2000, 18: 628–639

    Article  Google Scholar 

  41. Chong S K, Hwang T. Quantum key agreement protocol based on BB84. Opt Commun, 2010, 283: 1192–1195

    Article  Google Scholar 

  42. Liu B, Gao F, Wen Q Y. Single-photon multiparty quantum cryptographic protocols with collective detection. IEEE J Quantum Electron, 2011, 47: 1383–1390

    Article  Google Scholar 

  43. Lin S, Wen Q Y, Qin S J, et al. Multiparty quantum secret sharing with collective eavesdropping-check. Opt Commun, 2009, 282: 4455–4459

    Article  Google Scholar 

  44. Yang Y G, Chai H P, Wang Y, et al. Fault tolerant quantum secret sharing against collective-amplitude-damping noise. Sci China-Phys Mech Astron, 2011, 54: 1619–1624

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Gao, F., Huang, W. et al. Controlling the key by choosing the detection bits in quantum cryptographic protocols. Sci. China Inf. Sci. 58, 1–11 (2015). https://doi.org/10.1007/s11432-015-5413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-015-5413-8

Keywords

关键词

Navigation