Skip to main content
Log in

X-ray pulsar-based navigation using pulse phase and Doppler frequency measurements

一种基于脉冲相位和多普勒频率联合观测量的 X 射线脉冲星导航方法

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In order to eliminate the impact of the Doppler effects caused by the motion of the spacecraft on the X-ray pulsar-based navigation, an innovative navigation method using the pulse phase and Doppler frequency measurements of the X-ray pulsars is proposed. Given the initial estimate of the spacecraft’s state, the real-time photon arrival model is established at the spacecraft with respect to the spacecraft’s position and velocity predicted by the orbit dynamic model and their estimation errors. On this basis, a maximum likelihood estimation algorithm directly using the observed photon event timestamps is developed to extract a single pair of pulse phase and Doppler frequency measurements caused by the spacecraft’s state estimation error. Since the phase estimation error increases as the observation time increases, we propose a new measurement updating scheme of referring the measurements to the middle time of an observation interval. By using the ground-based simulation system of X-ray pulsar signals, a series of photon-level simulations are performed. The results testify to the feasibility and real-timeliness of the proposed navigation method, and show that the incorporation of the Doppler measurement as well as the pulse phase into the navigation filter can improve the navigation accuracy.

摘要

创新点

  1. 1.

    提出了一种新的基于脉冲相位和多普勒频率联合观测量的 X 射线脉冲星导航方法.

  2. 2.

    分别建立了脉冲相位及多普勒频率观测量与航天器初始位置及速度误差的关系.

  3. 3.

    将联合观测量的参考时刻取为观测时段的中间时刻, 有效地提高了导航精度.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sheikh S I. The use of variable celestial X-ray sources for spacecraft navigation. Dissertation for the Doctoral Degree. College Park: Maryland University, 2005

  2. Golshan A R, Sheikh S I. On pulse phase estimation and tracking of variable celestial X-ray sources. In: Proceedings of the 63rd Annual Meeting of the Institute of Navigation, Cambridge, 2007. 410–412

    Google Scholar 

  3. Emadzadeh A A, Speyer J L. Navigation in Space by X-ray Pulsars. Berlin: Springer, 2011

  4. Liu H Y, Xu B. A discrete Fourier transformation-based method for phase estimation in X-ray pulsar navigation. J Navig, 2015, 68: 989–998

    Article  Google Scholar 

  5. Xue M F, Li X P, Sun H F, et al. A new simulation method of X-ray pulsar signals (in Chinese). Acta Phys Sin, 2015, 64: 219701

    Google Scholar 

  6. Huang L W, Shuai P, Liang B, et al. synchronizing of multiple time-of arrivals for pulsar-based navigation. Trans Jpn Soc Aeron Space Sci, 2014, 51: 31–39

    Article  Google Scholar 

  7. Zhang H, Xu L P, Xie Q. Modeling and Doppler measurement of X-ray pulsar. Sci China-Phys Mech Astron, 2011, 54: 1068–1076

    Article  Google Scholar 

  8. Emadzadeh A A. On modeling and pulse phase estimation of X-ray pulsars. IEEE Trans Signal Process, 2010, 58: 4484–4495

    Article  MathSciNet  Google Scholar 

  9. Huang LW, Liang B, Zhang T, et al. Navigation using binary pulsars. Sci China-Phys Mech Astron, 2012, 55: 527–539

    Article  Google Scholar 

  10. Chen B Q, Zhang Z S, Zi Y Y, et al. A pseudo wavelet system-based vibration signature extracting method for rotating machinery fault detection. Sci China Tech Sci, 2013, 56: 1294–1306

    Google Scholar 

  11. He W P, Zi Y Y, Chen B Q, et al. Tunable Q-factor wavelet transform denoising with neighboring coefficients and its application to rotating machinery fault diagnosis. Sci China Tech Sci, 2013, 56: 1956–1965

    Article  Google Scholar 

  12. Chen Y M, Zi Y Y, Cao H R, et al. A data-driven threshold for wavelet sliding window denoising in mechanical fault detection. Sci China Tech Sci, 2014, 57: 589–597

    Article  Google Scholar 

  13. Guan F D, Ton P, Ge S P, et al. Anisotropic diffusion filtering for ultrasound speckle reduction. Sci China Tech Sci, 2014, 57: 607–614

    Article  Google Scholar 

  14. Ashby N, Golshan A R. Minimum uncertainties in position and velocity determination using X-ray photons from millisecond pulsars. In: Proceedings of the 2008 National Technical Meeting of The Institute of Navigation, San Diego, 2008. 110–118

    Google Scholar 

  15. Emadzadeh A A, Speyer J L. X-ray pulsar-based relative navigation using epoch folding. IEEE Trans Aerosp Electron Syst, 2011, 47: 2317–2328

    Article  Google Scholar 

  16. Fei B J, Pan G T, Xiao Y, et al. Motion equation of satellite in XNAV (in Chinese). Chin J Space Sci, 2011, 31: 254–259

    Google Scholar 

  17. Liu J, Kang Z W, White P, et al. Doppler/XNAV-integrated navigation system using small-area X-ray sensor. IET Radar Sonar Navig, 2011, 5: 1010–1017

    Article  Google Scholar 

  18. Qiao L, Liu J, Zheng G, et al. Augmentation of XNAV system to an ultraviolet sensor-based satellite navigation system. IEEE J Sel Top Signal Process, 2009, 3: 777–785

    Article  Google Scholar 

  19. Fei B L, Pan G T, Yao G Z. Arithmetic of frequency drift and time delay between pulse profiles in XNAV. Acta Geodaetica, 2011, 40: 126–132

    Google Scholar 

  20. Fei B J, Yao G Z, Du J, et al. The pulse profile and united measurement equation in XNAV. Sci China-Phys Mech Astron, 2011, 40: 644–650

    Google Scholar 

  21. Liu J, Fang J C, Ning X L, et al. Closed-loop EKF-based pulsar navigation for Mars explorer with Doppler effects. J Navig, 2014, 67: 776–790

    Article  Google Scholar 

  22. Liu J, Fang J C, Wu J, et al. Fast non-linearly constrained least square joint estimation of position and velocity for X-ray pulsar-based navigation. IET Radar Sonar Navig, 2014, 8: 1154–1163

    Article  Google Scholar 

  23. Sun H F, Bao WM, Xue M F, et al. A Doppler shift estimation method in X-Ray pulsar based navigation. J Astronaut, 2015, 36: 364–373

    Google Scholar 

  24. Huang L W, Liang B, Zhang T. Pulse phase and doppler frequency estimation of X-ray pulsars under conditions of spacecraft and binary motion and its application in navigation. Sci China-Phys Mech Astron, 2013, 56: 848–858

    Article  Google Scholar 

  25. Anderson K D, Pines D J. Methods of pulse phase tracking for X-ray pulsar based spacecraft navigation using low flux pulsars. In: Proceedings of SpaceOps 2014 13th International Conference on Space Operations, Pasadena, 2014. 1858

    Google Scholar 

  26. Anderson K D, Pines D J. Experimental validation of pulse phase tracking for X-ray pulsar based spacecraft navigation. In: Proceedings of AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, 2013. 5202

    Google Scholar 

  27. Xie S X, Liu Z L, Jiao N D, et al. Fabrication and characteristic detection of graphene nanoelectrodes. Sci China Tech Sci, 2014, 57: 1950–1955

    Article  Google Scholar 

  28. Du Z Z, Ai W, Zhao J F, et al. Synthesis and characterization of amphiphilic grapheme. Sci China Tech Sci, 2014, 57: 244–248

    Article  Google Scholar 

  29. Zhou X L, Wang M, Lian J, et al. Supercapacitors based on high-surface-area grapheme. Sci China Tech Sci, 2014, 57: 278–283

    Article  Google Scholar 

  30. Xiao X, Li Z Y, Chu T, et al. Development of silicon photonic devices for optical interconnects. Sci China Tech Sci, 2013, 56: 586–593

    Article  Google Scholar 

  31. Deng X P, Coles W, Hobbs G, et al. Optimal interpolation and prediction in pulsar timing. Mon Notic Roy Astron Soc, 2012, 424: 244–251

    Article  Google Scholar 

  32. Coles W, Hobbls G, Champion D J, et al. Pulsar timing analysis in the presence of correlated noise. Mon Notic Roy Astron Soc, 2011, 418: 561–570

    Article  Google Scholar 

  33. van Haasteren R, Levin Y. Understanding and analyzing time-correlated stochastic signals in pulsar timing. Mon Notic Roy Astron Soc, 2013, 428: 1147–1159

    Article  Google Scholar 

  34. Lyne A, Hobbs G, Kramer M, et al. Switched magnetospheric regulation of pulsar spin-down. Science, 2010, 329: 408–412

    Article  Google Scholar 

  35. Hobbs G, Lyne A, Kramer M. An analysis of the timing irregularities for 366 pulsars. Mon Notic Roy Astron Soc, 2010, 402: 1027–1048

    Article  Google Scholar 

  36. Wang Y D, Zheng W, Sun S M, et al. X-ray pulsar-based navigation using time-differenced measurement. Aerosp Sci Technol, 2014, 36: 27–35

    Article  Google Scholar 

  37. Deng X P, Hobbs G, You X P, et al. Interplanetary spacecraft navigation using pulsars. Adv Space Res, 2013, 52: 1602–1621

    Article  Google Scholar 

  38. Wang Y D, Zheng W, Sun S M. X-ray pulsar-based navigation system/Sun measurement integrated navigation method for deep space explorer. Proc Inst Mech Eng G-J Aerosp Eng, 2015, 229: 1843–1852

    Article  Google Scholar 

  39. Sun H F, Xie K, Li X P, et al. A simulation technique of X-ray pulsar signals with high timing stability. Acta Phys Sin, 2013, 62: 109701

    Google Scholar 

  40. Dennis W W. The Use of X-ray Pulsars for Aiding GPS Satellite Orbit Determination. Dissertation for the Master Degree. Air Force Institute of Technology, 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiYan Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, M., Li, X., Fu, L. et al. X-ray pulsar-based navigation using pulse phase and Doppler frequency measurements. Sci. China Inf. Sci. 58, 1–14 (2015). https://doi.org/10.1007/s11432-015-5460-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-015-5460-1

Keywords

关键词

Navigation