Skip to main content
Log in

Variable thrust directional control technique for plateau unmanned aerial vehicles

高原型无人机变推力轴线控制技术研究

  • Moo Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In order to increase the lift force of the unmanned aerial vehicles (UAV) in plateau areas, the UAV is commonly equipped with high span chord ratio wings. However, it may decrease the maneuverability of the aircraft, and thus increasing the risk of flight in complex terrain regions. Thrust vector control is a direct force flight control technique, which enhances the maneuverability and introduces the residual of the flight control system. In this paper, we develop a novel variable thrust direction mechanism, which provides the normal propeller UAV with the capability of directional force control. We propose a combinational flight control strategy for the newly developed UAV. Simulations and real flight test demonstrate the performance of the proposed technique in increasing the maneuverability of the conventional propeller UAV.

创新点

本文针对采用普通螺旋桨为推进动力的无人机变推力轴线控制技术开展研究, 在不改变无人机主要结构的基础上, 提出通过发动机与机体之间安装伺服机构改变螺旋桨发动机的推力线, 从而实现无人机的直接力/力矩控制。本文还进一步, 提出了变推力轴线与气动舵面的混合控制策略, 实现了螺旋桨推力分量与舵面气动力的协同工作。仿真和飞行试验表明本文所提出的变推力轴线无人机及其控制方法能够提高无人机在高原地区的机动性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Victoriagatlin R, Kempel D, Matheny R. The F-18 high alpha research vehicle—a high-angle-of-attack testbed aircraft. In: Proceedings of 6th AIAA Biennial Flight Test Conference, Hilton Head Island, 1992. AIAA-92-4121

    Google Scholar 

  2. Sparks A, Buffington M, Banda S. Fighter aircraft lateral axis full envelope control law design. In: Proceedings of 2nd IEEE Conference on Control Applications, 1993. 21–26

    Chapter  Google Scholar 

  3. Atesoglu Ö, ÖzgÖren K. High-alpha flight maneuverability enhancement of a twin engine fighter-bomber aircraft for air combat superiority using thrust-vectoring control. In: Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, 2006. AIAA 2006-6056

    Google Scholar 

  4. Sutton G P, Biblarz O. Rocket Propulsion Elements. 7th ed. New York: John Wiley and Sons, 2001. 608–623

    Google Scholar 

  5. Berrier B L, Taylor J G. Internal performance of two nozzles utilizing gimbal concepts for thrust vectoring. NASA TP-2991, 1990

    Google Scholar 

  6. Kuang M, Zhu J. Hover control of a thrust-vectoring aircraft. Sci China Inf Sci, 2015, 58: 073201

    Google Scholar 

  7. Hall C E, Shtessel Y B. Sliding mode disturbance observer-based control for a reusable launch vehicle. J Guid Control Dyn, 2006, 29: 1315–1328

    Article  Google Scholar 

  8. Brown D, Georgoulas G, Bae H, et al. Particle filter based anomaly detection for aircraft actuator systems. In: Proceedings of IEEE Aerospace Conference, Big Sky, 2009. 1–13

    Google Scholar 

  9. Hu C, Yao B, Wang Q. Coordinated adaptive robust contouring control of an industrial biaxial precision gantry with cogging force compensations. IEEE Trans Ind Electron, 2010, 57: 1746–1754

    Article  Google Scholar 

  10. Cho J U, Le Q N, Jeon J W. An FPGA-based multiple-axis motion control. IEEE Trans Ind Electron, 2009, 56: 856–870

    Article  Google Scholar 

  11. Lin F J, Chou P H. Adaptive control of two-axis motion control system using interval type-2 fuzzy neural network. IEEE Trans Ind Electron, 2009, 56: 178–193

    Article  Google Scholar 

  12. Gao J, Hu Y W. Direct self-control for BLDC motor drives based on three-dimensional coordinate system. IEEE Trans Ind Electron, 2010, 57: 2836–2844

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daobo Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, D. Variable thrust directional control technique for plateau unmanned aerial vehicles. Sci. China Inf. Sci. 59, 33201 (2016). https://doi.org/10.1007/s11432-015-5505-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-015-5505-5

Keywords

关键词

Navigation