Abstract
In this paper, we investigate concurrent transmission among multiple radio access technologies (RATs) for energy efficiency (EE) of multi-mode user equipment (MUE) in 5G wireless communication networks. Considering both the static circuit power consumption of the MUE and channel state information of different RATs, we propose an EE maximization concurrent transmission (EXACT) strategy by fully utilizing the multi-RAT combining gain of concurrent transmission. In particular, we formulate such EE maximization concurrent transmission problem as a mixed binary integer programming (MIP), and under some given static circuit power conditions, the optimal RATs selection and transmission rates for establishing concurrent transmission among multiple RATs are derived. Furthermore, in order to deal with the challenging MIP, an approximate expression is derived to simplify the integer constraints, thus the original MIP is transformed into a nonlinear continuous optimization problem. Consequently, a low complexity heuristic algorithm for general static circuit power conditions, which can achieve the near-optimal solution, is presented. Simulation results confirm the effectiveness of the EXACT strategy and show that the EE performance of the MUE can be significantly improved by reasonable and effective utilization of multiple RATs to execute concurrent transmission.
创新点
本文研究了使用并发传输技术在终端设备节能方面的应用,针对上行传输的特点,讨论了设备静态功耗对并发传输的影响,并在某些静态功耗条件下,对并发传输模型进行了必要的修正,提出达到理论最优值的上行最优能效并发传输策略。更进一步,针对上行传输一般情况,使用连续函数对整数问题进行了重建,并以此为基础,提出了能够逼近最优解的并发传输策略。
Similar content being viewed by others
References
Onireti O, Heliot F, Imran M A. On the energy efficiency-spectral efficiency trade-off in the uplink of comp system. IEEE Trans Wirel Commun, 2012, 11: 556–561
Carroll A, Heiser G. An analysis of power consumption in a smartphone. In: Proceedings of USENIX Annual Technical Conference. Boston: USENIX Association, 2010. 8–21
Zhong X, Xu C Z. Energy-efficient wireless packet scheduling with quality of service control. IEEE Trans Mob Comput, 2007, 6: 1158–1170
Ibrahim M, Khawam K, Tohmé S. Network-centric joint radio resource policy in heterogeneous WiMAX-UMTS networks for streaming and elastic traffic. In: Proceedings of IEEE Wireless Communications and Networking Conference, Budapest, 2009. 1–6
Andrews J G, Buzzi S, Choi W, et al. What will 5G be? IEEE J Sel Areas Commun, 2014, 32: 1065–1082
Lee W Y, Akyldiz I F. A spectrum decision framework for cognitive radio networks. IEEE Trans Mob Comput, 2011, 10: 161–174
Ferrus R, Sallent O, Agusti R. Interworking in heterogeneous wireless networks: comprehensive framework and future trends. IEEE Wirel Commun, 2010, 17: 22–31
Dimou K, Aguero R, Bortnik M, et al. Generic link layer: a solution for multi-radio transmission diversity in communication networks beyond 3G. In: Proceedings of 62nd IEEE Vehicular Technology Conference, Dallas, 2005. 1672–1676
Bazzi A, Pasolini G, Andrisano O. Multiradio resource management: parallel transmission for higher throughput? EURASIP J Adv Signal Process, 2008, 2008: 763264
Chen Y, Zhang S, Xu S, et al. Fundamental trade-offs on green wireless networks. IEEE Commun Mag, 2011, 49: 30–37
Saker L, Elayoubi S E, Chahed T. Minimizing energy consumption via sleep mode in green base station. In: Proceedings of IEEE Wireless Communications and Networking Conference, Sydney, 2010. 1–6
Ismail M, Zhuang W. Network cooperation for energy saving in green radio communications. IEEE Wirel Commun, 2011, 18: 76–81
Miao G, Himayat N, Li G. Energy-efficient link adaptation in frequency-selective channels. IEEE Trans Commun, 2010, 58: 545–554
Wang Y, Xu W, Yang K, et al. Optimal energy-efficient power allocation for OFDM-based cognitive radio networks. IEEE Commun Lett, 2012, 16: 1420–1423
Xie R, Yu F R, Ji H. Energy-efficient spectrum sharing and power allocation in cognitive radio femtocell networks. In: Proceedings of IEEE INFOCOM, Orlando, 2012. 1665–1673
Miao G, Himayat N, Li G Y, et al. Low-complexity energy-efficient scheduling for uplink OFDMA. IEEE Trans Commun, 2012, 60: 112–120
Khakurel S, Musavian L, Le-Ngoc T. Energy-efficient resource and power allocation for uplink multi-user OFDM systems. In: Proceedings of IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Sydney, 2012. 357–361
Ma X, Sheng M, Zhang Y. Green communications with network cooperation: a concurrent transmission approach. IEEE Commun Lett, 2012, 16: 1952–1955
Radio Access Network; Generic Access Network; Stage 2 (Release 7). TS 43.318, v.8.3.0, Std., 2008
Akbari A, Imran M, Tafazolli R, et al. Energy efficiency contours for single-carrier downlink channels. IEEE Commun Lett, 2011, 15: 1307–1309
Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004
Sesia S, Toufik I, Baker M. LTE: the UMTS Long Term Evolution. Wiley Online Library, 2009
Hoekstra G J, van der Mei R D, Bhulai S. Optimal job splitting in parallel processor sharing queues. Stoch Models, 2012, 28: 144–166
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ma, X., Sheng, M., Li, J. et al. Concurrent transmission for energy efficiency of user equipment in 5G wireless communication networks. Sci. China Inf. Sci. 59, 1–15 (2016). https://doi.org/10.1007/s11432-015-5507-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11432-015-5507-3
Keywords
- energy efficiency
- green communication
- concurrent transmission
- 5G wireless communication networks
- data splitting