Abstract
We propose a quantum public-key encryption (QPKE) protocol for an unknown multi-qubit state based on qubit-wise teleportation. The private-key is a computational Boolean function, whereas the public-key is a pair of a random bit string and a quantum state. A private-key corresponds to an exponential number of public-keys. Security analysis showed that the proposed protocol has information-theoretic security from attacks for the private-key and the encryption. A multi-partite quantum secret state sharing protocol is presented based on the proposed multi-qubit-oriented QPKE protocol. Such secret state sharing protocol is information-theoretically secure.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Zukowski M, Zeilinger A, Horne M A, et al. “Event-ready-detectors”Bell experiment via entanglement swapping. Phys Rev Lett, 1993, 71: 4287–4290
Pan J W, Bouwmeester D, Weinfurter H, et al. Experimental entanglement swapping: entangling photons that never interacted. Phys Rev Lett, 1998, 80: 3891–3894
Huelga S F, Vaccaro J A, Chefles A, et al. Quantum remote control: teleportation of unitary operations. Phys Rev A, 2001, 63: 042303
Sheng Y B, Deng F G, Long G L. Complete hyperentangled-Bell-state analysis for quantum communication. Phys Rev A, 2010, 82: 032318
Wang X L, Cai X D, Su Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 2015, 518: 516–519
Li T C, Yin Z Q. Quantum superpositon, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Sci Bull, 2016, 61: 163–171
Uhlmann A. Anti-(conjugate) linearity. Sci China-Phys Mech Astron, 2016, 59: 630301
Yan F L, Yang L G. Ecomomical teleprotation of multiparticle quantum state. Nuovo Cimento Soc Ital Fis B, 2003, 118: 79–82
Zheng Y Z, Gu Y J, Wu G C, et al. Teleportation of a multiqubit state by an entangled qubit channel. Chinese Phys, 2003, 12: 1070–1075
Pan J W, Daniell M, Gasparoni S, et al. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys Rev Lett, 2001, 86: 4435
Zhang Z J, Man Z X. Many-agent controlled teleportation of multi-qubit quantum information. Phys Lett A, 2005, 341: 55–59
Zhang Z J, Liu Y M, Man Z X. Many-agent controlled teleportation of multi-qubit quantum information via quantum entanglement swapping. Commun Theory Phys, 2005, 44: 847
Yang C P, Chu S I, Han S. Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys A, 2004, 70: 022329
Jie Y. Multi-agent controlled teleportation of multi-qubit quantum information via two-step protocol. Chinese Phys, 2005, 14: 2149–2152
Wu Y L, Li S J, Ge W, et al. Generation of polarization-entangled photon pairs in a cold atomic ensemble. Sci Bull, 2016, 61: 302–306
Cao D Y, Liu B H, Wang Z, et al. Multiuser-to-multiuser entanglement distribution based on 1550 nm polarizationentangled photons. Sci Bull, 2015, 60: 1128–1132
René H, Markus G, Stenfan N, et al. A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci Bull, 2015, 60: 96–100
Li F, Bao W, Fu X. A quantum algorithm for the dihedral hidden subgroup problem based on lattice basis reduction algorithm. Chinese Sci Bull, 2014, 59: 2552–2557
Grover L K. Quantum mechanics helps in searching for a needle in haystack. Phys Rev Lett, 1997, 79: 325–328
Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput, 1997, 26: 1484–1509
Wu W Q, Zhang H G, Wang H Z, et al. A public key cryptosystem based on data complexity under quantum environment. Sci China Inf Sci, 2015, 58: 110102
Okamoto T, Tanaka K, Uchiyama S. Quantum public-key cryptosystems. In: Proceedings of the 20th Annual International Cryptology Conference on Advances in Cryptology. London: Springer-Verlag, 2000. 147–165
Gottesman D. Quantum public key cryptography with information-theoretic security. In: Proceedings of Workshop on Classical and Quantum Information Security, California, 2005. 15–18
Kawachi A, Koshiba T, Nishimura H, et al. Computational indistinguishability between quantum states and its cryptographic application. In: Proceedings of the 24th Annual International Conference on Theory and Applications of Cryptographic Techniques. Berlin: Springer-Verlag, 2005. 268–284
Li Y. Quantum public-key cryptosystem based on classical NP-complete problem. arXiv:quant-ph/0310076
Fujita H. Quantum McEliece public-key cryptosystem. Quantum Inf Comput, 2012, 12: 181–202
Deng F G, Li X H, Li C Y, et al. Multiparty quantum secret splitting and quantum state sharing. Phys Lett A, 2006, 354: 190–195
Hillery M, Buzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829
Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 59: 162
Deng F G, Long G L, Zhou H Y. An efficient quantum secret sharing scheme with Einstein-Podolsky-Rosen pairs. Phys Lett A, 2005, 340: 43–50
Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum-secret-sharing schemes. Phys Rev A, 2004, 69: 052307
Karimipour V, Bahraminasab A, Bagherinezhad S. Entanglement swapping of generalized cat states and secret sharing. Phys Rev A, 2002, 65: 042320
Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Phys Rev Lett, 1999, 83: 648
Lance A M, Symul T, Bowen W P, et al. Tripartite quantum state sharing. Phys Rev Lett, 2004, 92: 177903
Yang Y G, Wen Q Y. Threshold quantum secret sharing between multi-party and multi-party. Sci China Ser G-Phys Mech Astron, 2008, 51: 1308–1315
Yang Y G, Wen Q Y. Circular threshold quantum secret sharing. Chinese Phys B, 2008, 17: 419
Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A, 2002, 65: 032302
Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902
Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Phys Rev A, 2004, 69: 52319
Hoffmann H, Bostroem K, Felbinger T. Comment on Secure direct communication with a quantum one-time pad. Phys Rev A, 2005, 72: 16301
Yan F L, Zhang X Q. A scheme for secure direct communication using EPR pairs and teleportation. Eur Phys J B, 2004, 41: 75–78
Yang L, Yang B Y, Xiang C. Quantum public-key encryption schemes based on conjugate coding. arXiv:1112.0421
Liang M, Yang L. Public-key encryption and authentication of quantum information. Sci China Ser G-Phys Mech Astron, 2012, 55: 1618–1629
Yang C P, Guo G C. Multiparticle generalization of teleportation. Chinese Phys Lett, 2000, 17: 162
Ikram M, Zhu S Y, Zubairy M S. Quantum teleportation of an entangled state. Phys Rev A, 2000, 62: 022307
Lee J, Min H, Oh S D. Multipartite entanglement for entanglement teleportation. Phys Rev A, 2002, 66: 052318
Rigolin G. Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys Rev A, 2005, 71: 032303
Yang L, Xiang C, Li B. Qubit-string-based bit commitment protocols with physical security. arXiv:1011.5099
Boykin P O, Roychowdhury V. Optimal encryption of quantum bits. Phys Rev A, 2003, 67: 042317
Boykin P O. Information security and quantum mechanics: security of quantum protocols. Dissertation for Ph.D. Degree. Los Angeles: University of California, 2002
Ambainis A, Mosca M, Tapp A, et al. Private quantum channels. In: Proceedings of IEEE 54th Symposium on Foundations of Computer Science. Washington: IEEE Computer Society, 2000. 547
Acknowledgments
This work was supported by National Natural Science Foundation of China (Grant Nos. 61173157, 61672517).
Author information
Authors and Affiliations
Corresponding author
Additional information
An erratum to this article is available at http://dx.doi.org/10.1007/s11432-016-0893-y.
Rights and permissions
About this article
Cite this article
Wu, C., Yang, L. Qubit-wise teleportation and its application in public-key secret communication. Sci. China Inf. Sci. 60, 032501 (2017). https://doi.org/10.1007/s11432-016-0152-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11432-016-0152-4