Abstract
The extreme aeroheating at hypersonic regime and the insufficient dynamic pressure in the near space limit the achievable performance of the hypersonic vehicles using aerosurfaces alone. In this paper, an integrated pneumatic and thrust vectoring control strategy is employed to design a control scheme for the longitudinal dynamics of a hypersonic vehicle model. The methodology reposes upon a division of the model dynamics, and an L 1 adaptive control architecture is applied to the design of the inner-loop and outer-loop controllers. Further, a control allocation algorithm is developed to coordinate pneumatic and thrust vectoring control. Simulation results demonstrate that the allocation algorithm is effective in control coordination, and the proposed control scheme achieves excellent tracking performance in spite of aerodynamic uncertainties.
创新点
受到高超音速飞行状态下气动加热效应,以及在临近空间飞行时气动舵面效率的影响,仅采用舵面控制将限制控制性能的发挥。本文采用了融合气动/矢量推力的控制策略,采用L 1自适应控制方法为一款通用高超音速飞行器纵向模型设计了控制器。通过调整分配参数,在不同飞行段改变气动控制和矢量推力控制的权重,从而突破上述限制。仿真结果验证了这一控制策略的有效性,同时,在引入气动参数不确定性的情况下取得了良好的控制精度。
Similar content being viewed by others
References
Hallion R. The history of hypersonics: or, ‘Back to the future: again and again’. In: Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, 2005. AIAA 2005-329
Fiorentini L, Serrani A, Bolender M A, et al. Robust nonlinear sequential loop closure control design for an air-breathing hypersonic vehicle model. In: Proceedings of American Control Conference, Washington, 2008. 3458–3463
Christopher P, Morgan B, Ilya K. Model predictive control guidance with extended command governor inner-Loop flight control for hypersonic vehicles. In: Proceedings of AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, 2013. AIAA 2013-5028
Daniel P W, Anuradha M A, Jonathan A M, et al. Adaptive control of a generic hypersonic vehicle. In: Proceedings of AIAA Guidance, Navigation, and Control (GNC) Conference, Boston, 2013. AIAA 2013-4514
Preller D, Smart M K. Longitudinal control strategy for hypersonic accelerating vehicles. J Spacecr Rockets, 2015, 52: 993–999
Buschek H, Calise A J. Uncertainty modeling and fixed-order controller design for a hypersonic vehicle model. J Guid Control Dyn, 1997, 20: 42–48
Chavez F R, Schmidt D K. Uncertainty modeling for multivariable-control robustness analysis of elastic high-speed vehicles. J Guid Control Dyn, 1999, 22: 87–95
Lind R. Linear parameter-varying modeling and control of structural dynamics with aerothermoelastic effects. J Guid Control Dyn, 2002, 25: 733–739
Xu H J, Mirmirani M D, Ioannou P A. Adaptive sliding mode control design for a hypersonic flight vehicle. J Guid Control Dyn, 2004, 27: 829–838
Fiorentini L, Serrani A, Bolender M A, et al. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles. J Guid Control Dyn, 2009, 32: 402–417
Wilcox Z D, MacKunis W, Bhat S, et al. Lyapunov-based exponential tracking control of a hypersonic aircraft with aerothermoelastic effects. J Guid Control Dyn, 2010, 33: 1213–1224
Sun H B, Li S H, Sun C Y. Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn, 2013, 73: 229–244
Bu X W, Wu X Y, Zhang R, et al. Tracking differentiator design for the robust backstepping control of a flexible air-breathing hypersonic vehicle. J Frankl Inst-Eng Appl Math, 2015, 352: 1739–1765
Yang J, Li S H, Sun C Y, et al. Nonlinear-disturbance-observer-based robust flight control for air-breathing hypersonic vehicles. IEEE Trans Aerosp Electron Syst, 2013, 49: 1263–1275
Xu B, Sun F, Liu H, et al. Adaptive Kriging controller design for hypersonic flight vehicle via back-stepping. IET Contr Theory Appl, 2012, 6: 487–497
Sun H F, Yang Z L, Zeng J P. New tracking-control strategy for airbreathing hypersonic vehicles. J Guid Control Dyn, 2013, 36: 846–859
Huang H, Zhang Z. Characteristic model-based H2/H1 robust adaptive control during the re-entry of hypersonic cruise vehicles. Sci China Inf Sci, 2014, 58: 1–21
Su X F, Jia Y M. Constrained adaptive tracking and command shaped vibration control of flexible hypersonic vehicles. IET Contr Theory Appl, 2015, 9: 1857–1868
Zhi Y, Yang Y. Discrete control of longitudinal dynamics for hypersonic flight vehicle using neural networks. Sci China Inf Sci, 2015, 58: 1–10
Pu Z Q, Yuan R Y, Tan X M, et al. Active robust control of uncertainty and flexibility suppression for air-breathing hypersonic vehicles. Aerosp Sci Tech, 2015, 42: 429–441
Geng J, Sheng Y Z, Liu X D. Finite-time sliding mode attitude control for a reentry vehicle with blended aerodynamic surfaces and a reaction control system. Chin J Aeronaut, 2014, 27: 964–976
Cai G H, Song J M, Chen X X. Command tracking control system design and evaluation for hypersonic reentry vehicles driven by a reaction control system. J Aerosp Eng, 2015, 28: 04014115
Cai G, Song J, Chen X. Control system design for hypersonic reentry vehicle driven by aerosurfaces and reaction control system. P I Mech Eng G-J Aer, 2014, 229: 1575–1587
Cen Z, Smith T, Stewart P, et al. Integrated flight/thrust vectoring control for jet-powered unmanned aerial vehicles with ACHEON propulsion. P I Mech Eng G-J Aer, 2014, 229: 1057–1075
Wang H L, Qin G Z, Wang Q Y, et al. Tracking control for a hypersonic air-breathing vehicle with thrust vectoring nozzles (in Chinese). Sci Sin-Phys Mech Astron, 2013, 43: 415–423
Poderico M, Morani G, Sollazzo A, et al. Fault-tolerant control laws against sensors failures for hypersonic flight. In: Proceedings of the 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, Tours, 2012. AIAA 2012-5967
Hellmundt F, Wildschek A, Maier R, et al. Comparison of L1 adaptive augmentation strategies for a differential PI baseline controller on a longitudinal F16 aircraft model. In: Advances in Aerospace Guidance, Navigation and Control. Berlin: Springer, 2015. 99–118
Hovakimyan N, Cao C. L1 Adaptive Control Theory: Guaranteed Robustness With Fast Adaptation. Philadelphia: Society for Industrial and Applied Mathematics, 2010
Lei Y, Cao C, Cliff E, et al. Design of an L1 adaptive controller for air-breathing hypersonic vehicle model in the presence of unmodeled dynamics. In: Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, 2007. AIAA 2007-6527
Prime Z, Doolan C, Cazzolato B. Longitudinal L1 Adaptive control of a hypersonic re-entry experiment. In: Proceedings of the 15th Australian International Aerospace Congress (AIAC15), Melbourne, 2013. 717–726
Banerjee S, Wang Z, Baur B, et al. L1 Adaptive control augmentation for the longitudinal dynamics of a hypersonic glider. J Guid Control Dyn, 2015, 39: 275–291
Wang Q, Stengel R F. Robust nonlinear control of a hypersonic aircraft. J Guid Control Dyn, 2000, 23: 577–585
Tony A, Zhu J, Michael B, et al. Flight control of hypersonic scramjet vehicles using a differential algebraic approach. In: Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, 2006. AIAA 2006-6559
Xu B, Shi Z K, Yang C G, et al. Neural control of hypersonic flight vehicle model via time-scale decomposition with throttle setting constraint. Nonlinear Dyn, 2013, 73: 1849–1861
Banerjee S, Creagh M A, Boyce R R. L1 adaptive control augmentation configuration for a hypersonic glider in the presence of uncertainties. In: Proceedings of AIAA Guidance, Navigation, and Control Conference, National Harbor, Maryland, 2014. AIAA 2014-0453
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, Q., Wan, J. & Ai, J. L 1 adaptive control of a generic hypersonic vehicle model with a blended pneumatic and thrust vectoring control strategy. Sci. China Inf. Sci. 60, 032203 (2017). https://doi.org/10.1007/s11432-016-0169-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11432-016-0169-8
Keywords
- hypersonic flight control
- L 1 adaptive control
- thrust vectoring
- control allocation
- parametric uncertainty