Skip to main content
Log in

A survey on recent progress in control of swarm systems

  • Review
  • Special Focus on Formation Control of Unmanned Systems
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

It has been witnessed that swarm systems are superior to individual agents in performing complicated tasks. In recent years, new results in some branches of control for swarm systems have developed and investigated with respect to various objectives and scenarios. This survey is to take a glimpse into some newly developed control techniques for swarm systems, especially those presented after 2013. The covered topics include some up-to-date progress in the areas of consensus, formation, flocking, containment, optimal coverage/mission planning, and sensor networks. Contributions and connections of the mentioned references are discussed briefly. Based on the new results in control of swarm systems, some possible new future research topics are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vicsek T, Czirók A, Ben-Jacob E, et al. Novel type of phase transition in a system of self-driven particles. Phys Rev Lett, 1995, 75: 1226

    Article  MathSciNet  Google Scholar 

  2. Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Automat Control, 2003, 48: 988–1001

    Article  MathSciNet  Google Scholar 

  3. Gazi V. Stability analysis of swarms. Dissertation for Ph.D. Degree. Columbus: The Ohio State University, 2002

    Book  Google Scholar 

  4. Ren W, Cao Y. Distributed Coordination of Multi-Agent Networks: Emergent Problems, Models, and Issues. Berlin: Springer Science Business Media, 2010

    MATH  Google Scholar 

  5. Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Automat Control, 2004, 49: 1520–1533

    Article  MathSciNet  Google Scholar 

  6. Moreau L. Stability of multiagent systems with time-dependent communication links. IEEE Trans Automat Control, 2005, 50: 169–182

    Article  MathSciNet  Google Scholar 

  7. Mesbahi M. On state-dependent dynamic graphs and their controllability properties. IEEE Trans Automat Control, 2005, 50: 387–392

    Article  MathSciNet  Google Scholar 

  8. Liu Y Y, Slotine J J, Barabási A L. Controllability of complex networks. Nature, 2011, 473: 167–173

    Article  Google Scholar 

  9. Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans Automat Control, 2005, 50: 655–661

    Article  MathSciNet  Google Scholar 

  10. Tian Y P, Liu C L. Consensus of multi-agent systems with diverse input and communication delays. IEEE Trans Automat Control, 2008, 53: 2122–2128

    Article  MathSciNet  Google Scholar 

  11. Hatano Y, Mesbahi M. Agreement over random networks. IEEE Trans Automat Control, 2005, 50: 1867–1872

    Article  MathSciNet  Google Scholar 

  12. Fax J A, Murray R M. Information flow and cooperative control of vehicle formations. IEEE Trans Automat Control, 2004, 49: 1465–1476

    Article  MathSciNet  Google Scholar 

  13. Porfiri M, Roberson D G, Stilwell D J. Tracking and formation control of multiple autonomous agents: a two-level consensus approach. Automatica, 2007, 43: 1318–1328

    Article  MathSciNet  MATH  Google Scholar 

  14. Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Automat Control, 2006, 51: 401–420

    Article  MathSciNet  Google Scholar 

  15. Liu Y, Passino K M. Cohesive behaviors of multiagent systems with information flow constraints. IEEE Trans Automat Control, 2006, 51: 1734–1748

    Article  MathSciNet  Google Scholar 

  16. Hong Y, Hu J, Gao L. Tracking control for multi-agent consensus with an active leader and variable topology. Automatica, 2006, 42: 1177–1182

    Article  MathSciNet  MATH  Google Scholar 

  17. Duan H, Liu S. Non-linear dual-mode receding horizon control for multiple unmanned air vehicles formation flight based on chaotic particle swarm optimisation. IET Control Theory Appl, 2010, 4: 2565–2578

    Article  Google Scholar 

  18. Semsar-Kazerooni E, Khorasani K. Optimal consensus algorithms for cooperative team of agents subject to partial information. Automatica, 2008, 44: 2766–2777

    Article  MathSciNet  MATH  Google Scholar 

  19. Semsar-Kazerooni E, Khorasani K. An optimal cooperation in a team of agents subject to partial information. Int J Control, 2009, 82: 571–583

    Article  MathSciNet  MATH  Google Scholar 

  20. Ji M, Ferrari-Trecate G, Egerstedt M, et al. Containment control in mobile networks. IEEE Trans Automat Control, 2008, 53: 1972–1975

    Article  MathSciNet  Google Scholar 

  21. Cortes J, Martinez S, Karatas T, et al. Coverage control for mobile sensing networks. In: Proceedings of IEEE International Conference on Robotics and Automation, Washington, 2002. 1327–1332

    Google Scholar 

  22. Doherty P, Heintz F, Kvarnström J. High-level mission specification and planning for collaborative unmanned aircraft systems using delegation. Unmanned Syst, 2013, 1: 75–119

    Article  Google Scholar 

  23. Azuma S I, Yoshimura R, Sugie T. Broadcast control of multi-agent systems. Automatica, 2013, 49: 2307–2316

    Article  MathSciNet  MATH  Google Scholar 

  24. Igarashi Y, Hatanaka T, Fujita M, et al. Passivity-based attitude synchronization in SE(3). IEEE Trans Control Syst Tech, 2009, 17: 1119–1134

    Article  Google Scholar 

  25. Pimenta L C, Pereira G A, Michael N, et al. Swarm coordination based on smoothed particle hydrodynamics technique. IEEE Trans Robotics, 2013, 29: 383–399

    Article  Google Scholar 

  26. Cao Y, Stuart D, Ren W, et al. Distributed containment control for multiple autonomous vehicles with doubleintegrator dynamics: algorithms and experiments. IEEE Trans Control Syst Tech, 2011, 19: 929–938

    Article  Google Scholar 

  27. Vig L, Adams J A. Multi-robot coalition formation. IEEE Trans Robotics, 2006, 22: 637–649

    Article  MATH  Google Scholar 

  28. Dydek Z T, Annaswamy A M, Lavretsky E. Adaptive configuration control of multiple uavs. Control Eng Practice, 2013, 21: 1043–1052

    Article  Google Scholar 

  29. Dong X, Yu B, Shi Z, et al. Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans Control Syst Tech, 2015, 23: 340–348

    Article  Google Scholar 

  30. Dong X, Zhou Y, Ren Z, et al. Time-varying formation control for unmanned aerial vehicles with switching interaction topologies. Control Eng Practice, 2016, 46: 26–36

    Article  Google Scholar 

  31. Jia Y, Wang L. Experimental implementation of distributed flocking algorithm for multiple robotic fish. Control Eng Practice, 2014, 30: 1–11

    Article  Google Scholar 

  32. Giovanini L, Balderud J, Katebi R. Autonomous and decentralized mission planning for clusters of uuvs. Int J Control, 2007, 80: 1169–1179

    Article  MATH  Google Scholar 

  33. Zhu B, Xie L H, Han D, et al. Recent developments in control and optimization of swarm systems: a brief survey. In: Proceedings of the 12th IEEE International Conference on Control and Automation (ICCA), Kathmandu, 2016. 19–24

    Google Scholar 

  34. You K Y, Xie L H. Survey of recent progress in networked control systems. Acta Automat Sin, 2013, 39: 101–117

    Article  MathSciNet  Google Scholar 

  35. Zuo Z, Tie L. A new class of finite-time nonlinear consensus protocols for multi-agent systems. Int J Control, 2014, 87: 363–370

    Article  MathSciNet  MATH  Google Scholar 

  36. Godsil C, Royle G F. Algebraic Graph Theory. Berlin: Springer Science & Business Media, 2013

    MATH  Google Scholar 

  37. Ren W, Atkins E. Distributed multi-vehicle coordinated control via local information exchange. Int J Robust Nonlinear Control, 2007, 17: 1002–1033

    Article  MathSciNet  MATH  Google Scholar 

  38. Ren W, Beard R W. Distributed Consensus in Multi-Vehicle Cooperative Control. Berlin: Springer, 2008

    Book  MATH  Google Scholar 

  39. Zhang H T, Zhai C, Chen Z. A general alignment repulsion algorithm for flocking of multi-agent systems. IEEE Trans Automatic Control, 2011, 56: 430–435

    Article  MathSciNet  Google Scholar 

  40. Ferrari-Trecate G, Galbusera L, Marciandi M P E, et al. Model predictive control schemes for consensus in multi-agent systems with single-and double-integrator dynamics. IEEE Trans Automat Control, 2009, 54: 2560–2572

    Article  MathSciNet  Google Scholar 

  41. Dimarogonas D V, Frazzoli E, Johansson K H. Distributed event-triggered control for multi-agent systems. IEEE Trans Automat Control, 2012, 57: 1291–1297

    Article  MathSciNet  Google Scholar 

  42. Ren W. Distributed leaderless consensus algorithms for networked euler–lagrange systems. Int J Control, 2009, 82: 2137–2149

    Article  MathSciNet  MATH  Google Scholar 

  43. Kumar M, Garg D, Kumar V. Segregation of heterogeneous units in a swarm of robotic agents. IEEE Trans Automat Control, 2010, 55: 743–748

    Article  MathSciNet  Google Scholar 

  44. Wieland P, Sepulchre R, Allgöwer F. An internal model principle is necessary and sufficient for linear output synchronization. Automatica, 2011, 47: 1068–1074

    Article  MathSciNet  MATH  Google Scholar 

  45. Ren W. Consensus strategies for cooperative control of vehicle formations. IET Control Theory Appl, 2007, 1: 505–512

    Article  Google Scholar 

  46. Dunbar WB, Murray RM. Distributed receding horizon control for multi-vehicle formation stabilization. Automatica, 2006, 42: 549–558

    Article  MathSciNet  MATH  Google Scholar 

  47. Gu D. A differential game approach to formation control. IEEE Trans Control Syst Tech, 2008, 16: 85–93

    Article  Google Scholar 

  48. Chen Y Y, Tian Y P. A backstepping design for directed formation control of three-coleader agents in the plane. Int J Robust Nonlinear Control, 2009, 19: 729–745

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhao D, Zou T, Li S, et al. Adaptive backstepping sliding mode control for leader-follower multi-agent systems. IET Control Theory Appl, 2012, 6: 1109–1117

    Article  MathSciNet  Google Scholar 

  50. Bennet D J, MacInnes C, Suzuki M, et al. Autonomous three-dimensional formation flight for a swarm of unmanned aerial vehicles. J Guidance Control Dynam, 2011, 34: 1899–1908

    Article  Google Scholar 

  51. Karaman S, Frazzoli E. Linear temporal logic vehicle routing with applications to multi-uav mission planning. Int J Robust Nonlinear Control, 2011, 21: 1372–1395

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang H. Consensus of networked mechanical systems with communication delays: a unified framework. IEEE Trans Automat Control, 2014, 59: 1571–1576

    Article  MathSciNet  MATH  Google Scholar 

  53. Abdessameud A, Polushin I G, Tayebi A. Synchronization of lagrangian systems with irregular communication delays. IEEE Trans Automat Control, 2014, 59: 187–193

    Article  MathSciNet  MATH  Google Scholar 

  54. Abdessameud A, Polushin I G, Tayebi A. Synchronization of nonlinear systems with communication delays and intermittent information exchange. Automatica, 2015, 59: 1–8

    Article  MathSciNet  MATH  Google Scholar 

  55. Seyboth G S, Dimarogonas D V, Johansson K H. Event-based broadcasting for multi-agent average consensus. Automatica, 2013, 49: 245–252

    Article  MathSciNet  MATH  Google Scholar 

  56. Liu S, Xie L, Zhang H. Distributed consensus for multi-agent systems with delays and noises in transmission channels. Automatica, 2011, 47: 920–934

    Article  MathSciNet  MATH  Google Scholar 

  57. Huang J. Nonlinear Output Regulation: Theory and Applications. London: Prentice-Hall, 2004

    Book  MATH  Google Scholar 

  58. Kim H, Shim H, Jin H S. Output consensus of heterogeneous uncertain linear multi-agent systems. IEEE Trans Automat Control, 2011, 56: 200–206

    Article  MathSciNet  Google Scholar 

  59. Wang X, Hong Y, Huang J, et al. A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Trans Automat Control, 2010, 55: 2891–2895

    Article  MathSciNet  Google Scholar 

  60. Xiang J, Wei W, Li Y. Synchronized output regulation of linear networked systems. IEEE Trans Automat Control, 2009, 54: 1336–1341

    Article  MathSciNet  Google Scholar 

  61. Huang J. Remarks on synchronized output regulation of linear networked systems. IEEE Trans Automat Control, 2011, 56: 630–631

    Article  MathSciNet  Google Scholar 

  62. Ding Z. Consensus output regulation of a class of heterogeneous nonlinear systems. IEEE Trans Automat Control, 2013, 58: 2648–2653

    Article  MathSciNet  Google Scholar 

  63. Isidori A, Marconi L, Casadei G. Robust output synchronization of a network of heterogeneous nonlinear agents via nonlinear regulation theory. IEEE Trans Automat Control, 2014, 59: 2680–2691

    Article  MathSciNet  MATH  Google Scholar 

  64. Yi D, Jie H. Cooperative global output regulation for a class of nonlinear multi-agent systems. IEEE Trans Automat Control, 2014, 59: 1348–1354

    Article  MathSciNet  MATH  Google Scholar 

  65. Su Y, Huang J. Cooperative global robust output regulation for nonlinear uncertain multi-agent systems in lower triangular form. IEEE Trans Automat Control, 2015, 60: 2378–2389

    Article  MathSciNet  MATH  Google Scholar 

  66. Liu W, Huang J. Cooperative global robust output regulation for a class of nonlinear multi-agent systems with switching network. IEEE Trans Automat Control, 2015, 60: 1963–1968

    Article  MathSciNet  MATH  Google Scholar 

  67. Tang Y, Hong Y, Wang X. Distributed output regulation for a class of nonlinear multi-agent systems with unknowninput leaders. Automatica, 2015, 62: 154–160

    Article  MathSciNet  MATH  Google Scholar 

  68. Liu L. Adaptive cooperative output regulation for a class of nonlinear multi-agent systems. IEEE Trans Automat Control, 2015, 60: 1677–1682

    Article  MathSciNet  MATH  Google Scholar 

  69. Cai H, Lewis F L, Hu G, et al. The adaptive distributed observer approach to the cooperative output regulation of linear multi-agent systems. Automatica, 2017, 75: 299–305

    Article  MathSciNet  MATH  Google Scholar 

  70. Huang J. The cooperative output regulation problem of discrete-time linear multi-agent systems by the adaptive distributed observer. IEEE Trans Automat Control, 2017, 62: 1979–1984

    Article  MathSciNet  Google Scholar 

  71. Li Z, Chen M Z Q, Ding Z. Distributed adaptive controllers for cooperative output regulation of heterogeneous agents over directed graphs. Automatica, 2016, 68: 179–183

    Article  MathSciNet  MATH  Google Scholar 

  72. Wang L, Xiao F. Finite-time consensus problems for networks of dynamic agents. IEEE Trans Automat Control, 2010, 55: 950–955

    Article  MathSciNet  Google Scholar 

  73. Xiao F, Wang L, Chen T. Finite-time consensus in networks of integrator-like dynamic agents with directional link failure. IEEE Trans Automat Control, 2014, 59: 756–762

    Article  MathSciNet  MATH  Google Scholar 

  74. Gao W, Hung J C. Variable structure control of nonlinear systems: a new approach. IEEE Trans Ind Electron, 1993, 40: 45–55

    Article  Google Scholar 

  75. Huang X, Lin W, Yang B. Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica, 2005, 41: 881–888

    Article  MathSciNet  MATH  Google Scholar 

  76. Wang Y Z, Feng G. On finite-time stability and stabilization of nonlinear port-controlled hamiltonian systems. Sci China Inf Sci, 2013, 56: 108202

    MathSciNet  Google Scholar 

  77. Ding S H, Li S H. A survey for finite-time control problems. Control Decision, 2011, 26: 161–169

    MathSciNet  MATH  Google Scholar 

  78. Cortes J. Finite-time convergent gradient flows with applications to network consensus. Automatica, 2006, 42: 1993–2000

    Article  MathSciNet  MATH  Google Scholar 

  79. Wang X, Hong Y. Finite-time consensus for multi-agent networks with second-order agent dynamics. IFAC Proc Vol, 2008, 41: 15185–15190

    Article  Google Scholar 

  80. Zhao Y, Duan Z, Wen G, et al. Distributed finite-time tracking control for multi-agent systems: an observer-based approach. Syst Control Lett, 2013, 62: 22–28

    Article  MathSciNet  MATH  Google Scholar 

  81. Zhao L W, Hua C C. Finite-time consensus tracking of second-order multi-agent systems via nonsingular TSM. Nonlinear Dynam, 2014, 75: 311–318

    Article  MathSciNet  MATH  Google Scholar 

  82. Liu Y, Geng Z. Finite-time optimal formation control for second-order multiagent systems. Asian J Control, 2014, 16: 138–148

    Article  MathSciNet  MATH  Google Scholar 

  83. Zuo Z. Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica, 2015, 54: 305–309

    Article  MathSciNet  MATH  Google Scholar 

  84. Yu H, Shen Y, Xia X. Adaptive finite-time consensus in multi-agent networks. Syst Control Lett, 2013, 62: 880–889

    Article  MathSciNet  MATH  Google Scholar 

  85. Huang J, Wen C, Wang W, et al. Adaptive finite-time consensus control of a group of uncertain nonlinear mechanical systems. Automatica, 2015, 51: 292–301

    Article  MathSciNet  MATH  Google Scholar 

  86. Cao Y, Ren W. Finite-time consensus for multi-agent networks with unknown inherent nonlinear dynamics. Automatica, 2014, 50: 2648–2656

    Article  MathSciNet  MATH  Google Scholar 

  87. Hendrickx J M, Shi G, Johansson K H. Finite-time consensus using stochastic matrices with positive diagonals. IEEE Trans Automat Control, 2015, 60: 1070–1073

    Article  MathSciNet  MATH  Google Scholar 

  88. Zhao Y, Duan Z,Wen G. Finite-time consensus for second-order multi-agent systems with saturated control protocols. IET Control Theory Appl, 2015, 9: 312–319

    Article  MathSciNet  Google Scholar 

  89. Zhang B, Jia Y. Fixed-time consensus protocols for multi-agent systems with linear and nonlinear state measurements. Nonlinear Dynam, 2015, 82: 1683–1690

    Article  MathSciNet  MATH  Google Scholar 

  90. Zuo Z, Tie L. Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int J Syst Sci, 2016, 47: 1366–1375

    Article  MathSciNet  MATH  Google Scholar 

  91. Li Z, Duan Z, Xie L, et al. Distributed robust control of linear multi-agent systems with parameter uncertainties. Int J Control, 2012, 85: 1039–1050

    Article  MathSciNet  MATH  Google Scholar 

  92. Qiu Z, Hong Y, Xie L. Quantized leaderless and leader-following consensus of high-order multi-agent systems with limited data rate. IEEE Trans Automat Control, 2016, 61: 2432–2447

    Article  MathSciNet  MATH  Google Scholar 

  93. He W, Cao J. Consensus control for high-order multi-agent systems. IET Control Theory Appl, 2011, 5: 231–238

    Article  MathSciNet  Google Scholar 

  94. Peng J, Ye X. Cooperative output-synchronisation of networked high-order power integrators. IET Control Theory Appl, 2013, 7: 2143–2152

    Article  MathSciNet  MATH  Google Scholar 

  95. Zhang H, Lewis F L, Qu Z. Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs. IEEE Trans Industrial Electron, 2012, 59: 3026–3041

    Article  Google Scholar 

  96. Du H, Wen G, Yu X, et al. Finite-time consensus of multiple nonholonomic chained-form systems based on recursive distributed observer. Automatica, 2015, 62: 236–242

    Article  MathSciNet  MATH  Google Scholar 

  97. Zuo Z, Cichella V, Xu M, et al. Three-dimensional coordinated path-following control for second-order multi-agent networks. J Franklin Institute, 2015, 352: 3858–3872

    Article  MathSciNet  Google Scholar 

  98. Meng W, He Z, Teo R, et al. Integrated multi-agent system framework: decentralised search, tasking and tracking. IET Control Theory Appl, 2015, 9: 493–502

    Article  Google Scholar 

  99. Mei J, Ren W, Ma G. Distributed coordination for second-order multi-agent systems with nonlinear dynamics using only relative position measurements. Automatica, 2013, 49: 1419–1427

    Article  MathSciNet  MATH  Google Scholar 

  100. Li W, Spong M W. Unified cooperative control of multiple agents on a sphere for different spherical patterns. IEEE Trans Automat Control, 2014, 59: 1283–1289

    Article  MathSciNet  MATH  Google Scholar 

  101. Li W. Collective motion of swarming agents evolving on a sphere manifold: a fundamental framework and characterization. Sci Reports, 2015, 5

    Google Scholar 

  102. Kumar G, Kothare M V. Broadcast stochastic receding horizon control of multi-agent systems. Automatica, 2013, 49: 3600–3606

    Article  MathSciNet  MATH  Google Scholar 

  103. Li W, Zhang J F. Distributed practical output tracking of high-order stochastic multi-agent systems with inherent nonlinear drift and diffusion terms. Automatica, 2014, 50: 3231–3238

    Article  MathSciNet  MATH  Google Scholar 

  104. Dai L, Xia Y, Gao Y, et al. Cooperative distributed stochastic mpc for systems with state estimation and coupled probabilistic constraints. Automatica, 2015, 61: 89–96

    Article  MathSciNet  MATH  Google Scholar 

  105. Ding D, Wang Z, Shen B, et al. Event-triggered consensus control for discrete-time stochastic multi-agent systems: the input-to-state stability in probability. Automatica, 2015, 62: 284–291

    Article  MathSciNet  MATH  Google Scholar 

  106. Amelina N, Fradkov A, Jiang Y, et al. Approximate consensus in stochastic networks with application to load balancing. IEEE Trans Inf Theory, 2015, 61: 1739–1752

    Article  MathSciNet  MATH  Google Scholar 

  107. Chen Y, L¨u J, Lin Z. Consensus of discrete-time multi-agent systems with transmission nonlinearity. Automatica, 2013, 49: 1768–1775

    Article  MathSciNet  MATH  Google Scholar 

  108. Fan M C, Chen Z, Zhang H T. Semi-global consensus of nonlinear second-order multi-agent systems with measurement output feedback. IEEE Trans Automat Control, 2014, 59: 2222–2227

    Article  MathSciNet  MATH  Google Scholar 

  109. Wu Y, Meng X, Xie L, et al. An input-based triggering approach to leader-following problems. Automatica, 2017, 75: 221–228

    Article  MathSciNet  MATH  Google Scholar 

  110. Valcher M E, Misra P. On the consensus and bipartite consensus in high-order multi-agent dynamical systems with antagonistic interactions. Syst Control Lett, 2014, 66: 94–103

    Article  MathSciNet  MATH  Google Scholar 

  111. Wang P, Hadaegh F Y. Coordination and control of multiple microspacecraft moving in formation. J Astronaut Sci, 1996, 44: 315–355

    Google Scholar 

  112. Balch T, Arkin R C. Behavior-based formation control for multirobot teams. IEEE Trans Robotics Automat, 1998, 14: 926–939

    Article  Google Scholar 

  113. Beard R W, Lawton J, Hadaegh F Y, et al. A coordination architecture for spacecraft formation control. IEEE Trans Control Syst Techn, 2001, 9: 777–790

    Article  Google Scholar 

  114. Oh K K, Park M C, Ahn H S. A survey of multi-agent formation control. Automatica, 2015, 53: 424–440

    Article  MathSciNet  Google Scholar 

  115. Oh K K, Ahn H S. Formation control and network localization via orientation alignment. IEEE Trans Automat Control, 2014, 59: 540–545

    Article  MathSciNet  MATH  Google Scholar 

  116. Lin Z Y, Wang L L, Chen Z Y, et al. Necessary and sufficient graphical conditions for affine formation control. IEEE Trans Automat Control 2016, 61: 2877–2891

    Article  MathSciNet  MATH  Google Scholar 

  117. Lin Z, Ding W, Yan G, et al. Leader–follower formation via complex laplacian. Automatica, 2013, 49: 1900–1906

    Article  MathSciNet  MATH  Google Scholar 

  118. Lin Z, Wang L, Han Z, et al. Distributed formation control of multi-agent systems using complex laplacian. IEEE Trans Automat Control, 2014, 59: 1765–1777

    Article  MathSciNet  MATH  Google Scholar 

  119. Lee S M, Kim H, Myung H, et al. Cooperative coevolutionary algorithm-based model predictive control guaranteeing stability of multirobot formation. IEEE Trans Control Syst Tech, 2015, 23: 37–51

    Article  Google Scholar 

  120. Qiu H, Duan H. Receding horizon control for multiple uav formation flight based on modified brain storm optimization. Nonlinear Dynam, 2014, 78: 1973–1988

    Article  Google Scholar 

  121. Poonawala H A, Satici A C, Eckert H, et al. Collision-free formation control with decentralized connectivity preservation for nonholonomic-wheeled mobile robots. IEEE Trans Control Netw Syst, 2015, 2: 122–130

    Article  MathSciNet  Google Scholar 

  122. Rezaee H, Abdollahi F. A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots. IEEE Trans Ind Electron, 2014, 61: 347–354

    Article  Google Scholar 

  123. Do K D. Coordination control of multiple ellipsoidal agents with collision avoidance and limited sensing ranges. Syst Control Lett, 2012, 61: 247–257

    Article  MathSciNet  MATH  Google Scholar 

  124. Xia Y, Na X, Sun Z, et al. Formation control and collision avoidance for multi-agent systems based on position estimation. ISA Trans, 2016, 61: 287–296

    Article  Google Scholar 

  125. Zheng R, Lin Z, Fu M, et al. Distributed control for uniform circumnavigation of ring-coupled unicycles. Automatica, 2015, 53: 23–29

    Article  MathSciNet  Google Scholar 

  126. Chen Z, Zhang H T. No-beacon collective circular motion of jointly connected multi-agents. Automatica, 2011, 47: 1929–1937

    Article  MathSciNet  MATH  Google Scholar 

  127. Lou Y, Hong Y. Distributed surrounding design of target region with complex adjacency matrices. IEEE Trans Automat Control, 2015, 60: 283–288

    Article  MathSciNet  MATH  Google Scholar 

  128. Zhang Y, Hong Y. Distributed control design for leader escort of multi-agent systems. Int J Control, 2015, 88: 935–945

    MathSciNet  MATH  Google Scholar 

  129. Cai H, Huang J. The leader-following attitude control of multiple rigid spacecraft systems. Automatica, 2014, 50: 1109–1115

    Article  MathSciNet  MATH  Google Scholar 

  130. Mou S, Cao M, Morse A S. Target-point formation control. Automatica, 2015, 61: 113–118

    Article  MathSciNet  MATH  Google Scholar 

  131. Meng D, Jia Y, Du J, et al. On iterative learning algorithms for the formation control of nonlinear multi-agent systems. Automatica, 2014, 50: 291–295

    Article  MathSciNet  MATH  Google Scholar 

  132. Cai X, de Queiroz M. Adaptive rigidity-based formation control for multirobotic vehicles with dynamics. IEEE Trans Control Syst Tech, 2015, 23: 389–396

    Article  Google Scholar 

  133. Dong X, Xi J, Lu G, et al. Formation control for high-order linear time-invariant multiagent systems with time delays. IEEE Trans Control Netw Syst, 2014, 1: 232–240

    Article  MathSciNet  Google Scholar 

  134. Han T, Lin Z, Fu M. Three-dimensional formation merging control under directed and switching topologies. Automatica, 2015, 58: 99–105

    Article  MathSciNet  MATH  Google Scholar 

  135. Reynolds C W. Flocks, herds and schools: a distributed behavioral model. SIGGRAPH Comput Graph, 1987, 21: 25–34

    Article  Google Scholar 

  136. Dong Y, Huang J. Flocking with connectivity preservation of multiple double integrator systems subject to external disturbances by a distributed control law. Automatica, 2015, 55: 197–203

    Article  MathSciNet  Google Scholar 

  137. Wen G, Duan Z, Su H, et al. A connectivity-preserving flocking algorithm for multi-agent dynamical systems with bounded potential function. IET Control Theory Appl, 2012, 6: 813–821

    Article  MathSciNet  Google Scholar 

  138. Zhang Q, Li P, Yang Z, et al. Adaptive flocking of non-linear multi-agents systems with uncertain parameters. IET Control Theory Appl, 2014, 9: 351–357

    Article  MathSciNet  Google Scholar 

  139. Semnani S H, Basir O A. Semi-flocking algorithm for motion control of mobile sensors in large-scale surveillance systems. IEEE Trans Cybernetics, 2015, 45: 129–137

    Article  Google Scholar 

  140. Zhang H T, Cheng Z, Chen G, et al. Model predictive flocking control for second-order multi-agent systems with input constraints. IEEE Trans Circuits Syst I: Regular Papers, 2015, 62: 1599–1606

    Article  MathSciNet  Google Scholar 

  141. Zhan J, Li X. Consensus of sampled-data multi-agent networking systems via model predictive control. Automatica, 2013, 49: 2502–2507

    Article  MathSciNet  MATH  Google Scholar 

  142. Chen Z, Zhang H T, Fan M C, et al. Algorithms and experiments on flocking of multiagents in a bounded space. IEEE Trans Control Syst Tech, 2014, 22: 1544–1549

    Article  Google Scholar 

  143. Shang Y, Bouffanais R. Influence of the number of topologically interacting neighbors on swarm dynamics. Sci Reports, 2014, 4: 4184

    Article  Google Scholar 

  144. Punzo G, Young G F, Macdonald M, et al. Using network dynamical influence to drive consensus. Sci Reports, 2016, 6: 26318

    Article  Google Scholar 

  145. Copenhagen K, Quint D A, Gopinathan A. Self-organized sorting limits behavioral variability in swarms. Sci Reports, 2016, 6: 31808

    Article  Google Scholar 

  146. Reyes L A V, Tanner H G. Flocking, formation control, and path following for a group of mobile robots. IEEE Trans Control Syst Tech, 2015, 23: 1268–1282

    Article  Google Scholar 

  147. Rubenstein M, Cornejo A, Nagpal R. Programmable self-assembly in a thousand-robot swarm. Science, 2014, 345: 795–799

    Article  Google Scholar 

  148. Zhan J, Li X. Flocking of multi-agent systems via model predictive control based on position-only measurements. IEEE Trans Industrial Inf, 2013, 9: 377–385

    Article  Google Scholar 

  149. Han T T, Ge S S. Styled-velocity flocking of autonomous vehicles: a systematic design. IEEE Trans Automat Control, 2015, 60: 2015–2030

    Article  MathSciNet  MATH  Google Scholar 

  150. Li X, Su H, Chen M Z. Flocking of networked euler–lagrange systems with uncertain parameters and time-delays under directed graphs. Nonlinear Dynam, 2016, 85: 415–424

    Article  MathSciNet  MATH  Google Scholar 

  151. Martin S, Girard A, Fazeli A, et al. Multiagent flocking under general communication rule. IEEE Trans Control Netw Syst, 2014, 1: 155–166

    Article  MathSciNet  Google Scholar 

  152. Cao Y, Ren W, Egerstedt M. Distributed containment control with multiple stationary or dynamic leaders in fixed and switching directed networks. Automatica, 2012, 48: 1586–1597

    Article  MathSciNet  MATH  Google Scholar 

  153. Zheng Y, Wang L. Containment control of heterogeneous multi-agent systems. Int J Control, 2014, 87: 1–8

    Article  MathSciNet  MATH  Google Scholar 

  154. Liu S, Xie L, Zhang H. Containment control of multi-agent systems by exploiting the control inputs of neighbors. Int J Robust Nonlinear Control, 2014, 24: 2803–2818

    Article  MathSciNet  MATH  Google Scholar 

  155. Dong X, Xi J, Lu G, et al. Containment analysis and design for high-order linear time-invariant singular swarm systems with time delays. Int J Robust Nonlinear Control, 2014, 24: 1189–1204

    Article  MathSciNet  MATH  Google Scholar 

  156. Dong X, Shi Z, Lu G, et al. Formation-containment analysis and design for high-order linear time-invariant swarm systems. Int J Robust Nonlinear Control, 2015, 25: 3439–3456

    Article  MathSciNet  MATH  Google Scholar 

  157. Liu H, Cheng L, Tan M, et al. Containment control of continuous-time linear multi-agent systems with aperiodic sampling. Automatica, 2015, 57: 78–84

    Article  MathSciNet  MATH  Google Scholar 

  158. Haghshenas H, Badamchizadeh M A, Baradarannia M. Adaptive containment control of nonlinear multi-agent systems with non-identical agents. Int J Control, 2015, 88: 1586–1593

    Article  MathSciNet  MATH  Google Scholar 

  159. Haghshenas H, Badamchizadeh M A, Baradarannia M. Containment control of heterogeneous linear multi-agent systems. Automatica, 2015, 54: 210–216

    Article  MathSciNet  MATH  Google Scholar 

  160. Okabe A, Boots B, Sugihara K, et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Hoboken: John Wiley & Sons, 2009

    MATH  Google Scholar 

  161. Song C, Liu L, Feng G, et al. Persistent awareness coverage control for mobile sensor networks. Automatica, 2013, 49: 1867–1873

    Article  MathSciNet  MATH  Google Scholar 

  162. Kantaros Y, Thanou M, Tzes A. Distributed coverage control for concave areas by a heterogeneous robot–swarm with visibility sensing constraints. Automatica, 2015, 53: 195–207

    Article  MathSciNet  Google Scholar 

  163. Stergiopoulos Y, Thanou M, Tzes A. Distributed collaborative coverage-control schemes for non-convex domains. IEEE Trans Automat Control, 2015, 60: 2422–2427

    Article  MathSciNet  MATH  Google Scholar 

  164. Sharifi F, Mirzaei M, Zhang Y, et al. Cooperative multi-vehicle search and coverage problem in an uncertain environment. Unmanned Syst, 2015, 3: 35–47

    Article  Google Scholar 

  165. Miah S, Nguyen B, Bourque A, et al. Nonuniform coverage control with stochastic intermittent communication. IEEE Trans Automat Control, 2015, 60: 1981–1986

    Article  MathSciNet  MATH  Google Scholar 

  166. Xu Y, Salapaka S M, Beck C L. Clustering and coverage control for systems with acceleration-driven dynamics. IEEE Trans Automat Control, 2014, 59: 1342–1347

    Article  MathSciNet  MATH  Google Scholar 

  167. Jahangir M, Khosravi S, Afkhami H. A robust-adaptive fuzzy coverage control for robotic swarms. Nonlinear Dynam, 2012, 69: 1191–1201

    Article  MathSciNet  MATH  Google Scholar 

  168. Lee S G, Egerstedt M. Multirobot control using time-varying density functions. IEEE Trans Robotics, 2015, 31: 489–493

    Article  Google Scholar 

  169. Wongpiromsarn T, Topcu U, Murray R M. Synthesis of control protocols for autonomous systems. Unmanned Syst, 2013, 1: 21–39

    Article  Google Scholar 

  170. Darrah M, Wilhelm J, Munasinghe T, et al. A flexible genetic algorithm system for multi-uav surveillance: algorithm and flight testing. Unmanned Syst, 2015, 3: 49–62

    Article  Google Scholar 

  171. Sabo C, Kingston D, Cohen K. A formulation and heuristic approach to task allocation and routing of uavs under limited communication. Unmanned Syst, 2014, 2: 1–17

    Article  Google Scholar 

  172. Geng L, Zhang Y, Wang J, et al. Cooperative mission planning with multiple uavs in realistic environments. Unmanned Syst, 2014, 2: 73–86

    Article  Google Scholar 

  173. Miah S, Nguyen B, Bourque F A, et al. Nonuniform deployment of autonomous agents in harbor-like environments. Unmanned Syst, 2014, 2: 377–389

    Article  Google Scholar 

  174. Mo Y, Sinopoli B. Kalman filtering with intermittent observations: Tail distribution and critical value. IEEE Trans Automat Control, 2012, 57: 677–689

    Article  MathSciNet  Google Scholar 

  175. Sui T, You K, Fu M, et al. Stability of mmse state estimators over lossy networks using linear coding. Automatica, 2015, 51: 167–174

    Article  MathSciNet  MATH  Google Scholar 

  176. You K. Recursive algorithms for parameter estimation with adaptive quantizer. Automatica, 2015, 52: 192–201

    Article  MathSciNet  MATH  Google Scholar 

  177. Marelli D, You K, Fu M. Identification of arma models using intermittent and quantized output observations. Automatica, 2013, 49: 360–369

    Article  MathSciNet  MATH  Google Scholar 

  178. Han D, Cheng P, Chen J, et al. An online sensor power schedule for remote state estimation with communication energy constraint. IEEE Trans Automat Control, 2014, 59: 1942–1947

    Article  MathSciNet  MATH  Google Scholar 

  179. Han D, Mo Y, Wu J, et al. Stochastic event-triggered sensor schedule for remote state estimation. IEEE Trans Automat Control, 2015, 60: 2661–2675

    Article  MathSciNet  MATH  Google Scholar 

  180. Shi D, Chen T, Shi L. Event-triggered maximum likelihood state estimation. Automatica, 2014, 50: 247–254

    Article  MathSciNet  MATH  Google Scholar 

  181. Liu Q, Wang Z, He X, et al. Event-based recursive distributed filtering over wireless sensor networks. IEEE Trans Automat Control, 2015, 60: 2470–2475

    Article  MathSciNet  MATH  Google Scholar 

  182. Zhao S, Zhou R. Cooperative guidance for multimissile salvo attack. Chinese J Aeronaut, 2008, 21: 533–539

    Article  Google Scholar 

  183. Hou D, Wang Q, Sun X, et al. Finite-time cooperative guidance laws for multiple missiles with acceleration saturation constraints. IET Control Theory Appl, 2015, 9: 1525–1535

    Article  MathSciNet  Google Scholar 

  184. Wei X, Wang Y, Dong S, et al. A three-dimensional cooperative guidance law of multimissile system. Int J Aerospace Eng, 2015, 2015: 479427

    Google Scholar 

  185. Jeon I S, Lee J I, Tahk M J. Homing guidance law for cooperative attack of multiple missiles. J Guidance Control Dynam, 2010, 33: 275–280

    Article  Google Scholar 

  186. Liu S, Quevedo D E, Xie L. Event-triggered distributed constrained consensus. Int J Robust Nonlinear Control, 2016, in press. doi: 10.1002/rnc.3724

    Chapter  Google Scholar 

  187. Liu S, Xie L, Quevedo D E. Event-triggered quantized communication based distributed convex optimization. IEEE Trans Control Netw Syst, 2016, in press. doi: 10.1109/TCNS.2016.2585305

    Google Scholar 

  188. Meng X, Chen T. Event based agreement protocols for multi-agent networks. Automatica, 2013, 49: 2125–2132

    Article  MathSciNet  MATH  Google Scholar 

  189. Xiao F, Meng X, Chen T. Sampled-data consensus in switching networks of integrators based on edge events. Int J Control, 2015, 88: 391–402

    Article  MathSciNet  MATH  Google Scholar 

  190. Vahidalizadehdizaj M, Jadav J, Tao L. Security challenges in swarm intelligence. In: Proceedings of the 6th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Dallas-Fortworth, 2015. 1–4

    Google Scholar 

  191. Winfield A F, Nembrini J. Safety in numbers: fault-tolerance in robot swarms. Int J Modelling Identification Control, 2006, 1: 30–37

    Article  Google Scholar 

  192. Petnga L, Xu H. Security of unmanned aerial vehicles: dynamic state estimation under cyber-physical attacks. In: Proceedings of International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, 2016. 811–819

    Google Scholar 

  193. Han D, Mo Y, Xie L. Towards a unified resilience analysis: state estimation against integrity attacks. arXiv:1604.07549, 2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Xie, L., Han, D. et al. A survey on recent progress in control of swarm systems. Sci. China Inf. Sci. 60, 070201 (2017). https://doi.org/10.1007/s11432-016-9088-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-016-9088-2

Keywords

Navigation