Skip to main content
Log in

Physical layer security in multi-antenna cognitive heterogeneous cellular networks: a unified secrecy performance analysis

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Cognitive heterogeneous cellular networks (CHCNs) are emerging as a promising approach to next-generation wireless communications owing to their seamless coverage and high network throughput. In this paper, we describe our reliance on multi-antenna technology and a secrecy transmission protocol to ensure the reliability and security of downlink underlay CHCNs. First, we introduce a two-tier CHCN model using a stochastic geometry framework, and derive the probability distribution of the indicator function for a secrecy transmission scheme. We then investigate the connection outage probability, secrecy outage probability (SOP), and transmission SOP of both primary and cognitive users under a secrecy guard scheme and a threshold-based scheme. Furthermore, we reveal some insights into the secrecy performance by properly setting the predetermined access threshold and the radius of detection region for the secrecy transmission scheme. Finally, simulation results are provided to show the influence of the antenna system, eavesdropper density, predetermined access threshold, and radius of the detection region on the reliability and security performance of a CHCN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li B, Fei Z S, Chen H. Robust artificial noise-aided secure beamforming in wireless-powered non-regenerative relay. IEEE Access, 2016, 4: 7921–7929

    Article  Google Scholar 

  2. Yang N, Wang L, Geraci G, et al. Safeguarding 5G wireless communication networks using physical layer security. IEEE Commun Mag, 2015, 53: 20–27

    Article  Google Scholar 

  3. Li B, Fei Z S. Probabilistic-constrained robust secure transmission for energy harvesting over MISO channels. Sci China Inf Sci, 2018, 61: 022303

    Article  Google Scholar 

  4. Andrews J, Claussen H, Dohler M, et al. Femtocells: past, present, and future. IEEE J Sel Areas Commun, 2012, 30: 497–508

    Article  Google Scholar 

  5. Li B, Fei Z S, Chu Z, et al. Secure transmission for heterogeneous cellular networks with wireless information and power transfer. IEEE Syst J, 2017. doi: 10.1109/JSYST.2017.2713881

    Google Scholar 

  6. Zou Y, Yao Y D, Zheng B. Cooperative relay techniques for cognitive radio systems: spectrum sensing and secondary user transmissions. IEEE Commun Mag, 2012, 50: 98–503

    Article  Google Scholar 

  7. Xu X, He B, Yang W, et al. Secure transmission design for cognitive radio networks with poisson distributed eavesdroppers. IEEE Trans Inf Forensic Secur, 2015, 11: 373–387

    Article  Google Scholar 

  8. Zou Y, Zhu J, Yang L, et al. Securing physical-layer communications for cognitive radio networks. IEEE Commun Mag, 2015, 53: 48–54

    Article  Google Scholar 

  9. Li B, Fei Z S. Robust beamforming and cooperative jamming for secure transmission in DF relay systems. EURASIP J Wirel Commun Netw, 2016, 68: 1–11

    Article  Google Scholar 

  10. Li X Y, Jin L, Huang K Z, et al. Transmission frequency-band hidden technology in physical layer security. Sci China Inf Sci, 2016, 59: 019301

    Google Scholar 

  11. Gong S Q, Xing C W, Fei Z S, et al. Cooperative beamforming design for physical-layer security of multi-hop MIMO communications. Sci China Inf Sci, 2016, 59: 062304

    Article  Google Scholar 

  12. Zhong B, Wu M G, Li T, et al. Physical layer security via maximal ratio combining and relay selection over Rayleigh fading channels. Sci China Inf Sci, 2016, 59: 062305

    Article  Google Scholar 

  13. Zou Y, Champagne B, Zhu W P, et al. Relay-selection improves the security-reliability trade-off in cognitive radio systems. IEEE Trans Commun, 2015, 63: 215–228

    Google Scholar 

  14. Mokari N, Parsaeefard S, Saeedi H, et al. Secure robust ergodic uplink resource allocation in relay-assisted cognitive radio networks. IEEE Trans Signal Proc, 2015, 63: 291–304

    Article  MathSciNet  Google Scholar 

  15. Wang C, Wang H M. On the secrecy throughput maximization for MISO cognitive radio network in slow fading channels. IEEE Trans Inf Forensic Secur, 2014, 9: 1814–1827

    Article  Google Scholar 

  16. Zou Y, Wang X, Shen W. Physical-layer security with multiuser scheduling in cognitive radio networks. IEEE Trans Commun, 2013, 61: 5103–5113

    Article  Google Scholar 

  17. Zheng T X, Wang H M, Yuan J, et al. Multi-antenna transmission with artificial noise against randomly distributed eavesdroppers. IEEE Trans Commun, 2015, 63: 4347–4362

    Article  Google Scholar 

  18. Wang C, Wang H M, Xia X G, et al. Uncoordinated jammer selection for securing SIMOME wiretap channels: a stochastic geometry approach. IEEE Trans Wirel Commun, 2015, 14: 2596–2612

    Article  Google Scholar 

  19. Wang H M, Wang C, Zheng T X, et al. Impact of artificial noise on cellular networks: a stochastic geometry approach. IEEE Trans Wirel Commun, 2016, 15: 7390–7404

    Article  Google Scholar 

  20. Wang H M, Zheng T X, Yuan J, et al. Physical layer security in heterogeneous cellular networks. IEEE Trans Commun, 2016, 64: 1204–1219

    Article  Google Scholar 

  21. Shu Z H, Yang Y Q, Qian Y, et al. Impact of interference on secrecy capacity in a cognitive radio network. In: Proceedings of IEEE Global Telecommunications Conference, Kathmandu, 2011

    Google Scholar 

  22. Deng Y, Wang L, Zaidi S A R, et al. Artificial-noise aided secure transmission in large scale spectrum sharing networks. IEEE Trans Commun, 2016, 64: 2116–2129

    Article  Google Scholar 

  23. Xu X, Yang W, Cai Y, et al. On the secure spectral-energy efficiency tradeoff in random cognitive radio networks. IEEE J Sel Areas Commun, 2016, 34: 2706–2722

    Article  Google Scholar 

  24. Panahi F H, Ohtsuki T. Stochastic geometry based analytical modeling of cognitive heterogeneous cellular networks. In: Proceedings of IEEE International Conference on Communications, Sydney, 2014. 5281–5286

    Google Scholar 

  25. Blaszczyszyn B, Karray M K, Keeler H P. Using poisson processes to model lattice cellular networks. In: Proceedings of IEEE INFOCOM, Turin, 2013. 773–781

    Google Scholar 

  26. Taylor D B, Dhillon H S, Novlan T D, et al. Pairwise interaction processes for modeling cellular network topology. In: Proceedings of IEEE Global Communications Conference, Anaheim, 2012. 4524–4529

    Google Scholar 

  27. Dhillon H S, Ganti R K, Baccelli F, et al. Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE J Sel Areas Commun, 2012, 30: 550–560

    Article  Google Scholar 

  28. Deng Y S, Wang L F, Wong K K, et al. Safeguarding massive MIMO aided hetnets using physical layer security. In: Proceedings of IEEE International Conference on Wireless Communications & Signal Processing, Nanjing, 2015. 1–5

    Google Scholar 

  29. Wang H, Zhou X, Reed M C. Physical layer security in cellular networks: a stochastic geometry approach. IEEE Trans Wirel Commun, 2013, 12: 2776–2787

    Article  Google Scholar 

  30. Wu H, Tao X, Li N, et al. Secrecy outage probability in multi-RAT heterogeneous networks. IEEE Commun Lett, 2016, 20: 53–56

    Article  Google Scholar 

  31. Gupta A K, Dhillon H S, Vishwanath S, et al. Downlink coverage probability in MIMO HetNets with flexible cell selection. In: Proceedings of IEEE Global Communications Conference, Austin, 2014. 1534–1539

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61401510, 61379006, 61601514, 61521003), National High Technology Research and Development Program of China (863) (Grant No. 2015AA01A708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, X., Huang, K., Li, B. et al. Physical layer security in multi-antenna cognitive heterogeneous cellular networks: a unified secrecy performance analysis. Sci. China Inf. Sci. 61, 022310 (2018). https://doi.org/10.1007/s11432-016-9149-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-016-9149-4

Keywords

Navigation