Skip to main content
Log in

A transfer alignment method for airborne distributed POS with three-dimensional aircraft flexure angles

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

An airborne distributed position and orientation system (POS) appears to satisfy the requirement of multi-point motion parameters measurement. This relies on transfer alignment from a high precision master system to slave systems to obtain high accuracy motion parameters of all points. A key problem for a distributed POS involves determining a method to treat the aircraft flexure appropriately and achieve high precision transfer alignment. In this study, the effect of aircraft flexure on transfer alignment accuracy for airborne earth observation is first analyzed. Based on this, the error model of transfer alignment that considers three-dimensional flexure angles are established, and a transfer alignment based on parameter identification unscented Rauch-Tung-Striebel smoother (PIURTSS) is proposed. The simulations results show that the transfer alignment method based on PIURTSS effectively improves the estimation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu W, Deng Y K, Wang R. Multichannel synthetic aperture radar systems with a planar antenna for future spaceborne microwave remote sensing. IEEE Aerosp Electron Syst Mag, 2012, 27: 26–30

    Article  Google Scholar 

  2. Scherbaum P, Brauchle J, Kraft T, et al. MACS-Mar — a real-time capable multisensor remote sensing system for maritime applications. In: Proceedings of IEEE International Conference on Aerospace Electronics and Remote Sensing Technology, Bali, 2015

    Google Scholar 

  3. Chen N C, Pu F L, Hu C L, et al. Scientific issues and progress of the chinese integrated earth observation sensor web project. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, Manchester, 2013. 1058–1062

    Google Scholar 

  4. Mostafa M M R, Hutton J. Direct positioning and orientation systems: how do they work? What is the attainable accuracy? In: Proceedings of American Society of Photogrammetry and Remote Sensing Annual Meeting, St. Louis, 2001

    Google Scholar 

  5. Nagai M, Chen T, Shibasaki R, et al. UAV-borne 3-D mapping system by multisensor integration. IEEE Trans Geosci Remote Sens, 2009, 47: 701–708

    Article  Google Scholar 

  6. Chen S Y, Ma H C, Zhang Y C, et al. Boresight calibration of airborne Lidar system without ground control points. IEEE Geosci Remote Sens Lett, 2012, 9: 85–89

    Article  Google Scholar 

  7. Quan W, Li J L, Gong X L, et al. INS/CNS/GNSS Integrated Navigation Technology. Beijing: National Industry Press, 2015

    Book  Google Scholar 

  8. Huang P P, Tan W X, Su Y. MIMO-SAR imaging technology for helicopter-borne based on ARC antenna array. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Milan, 2015. 1801–1804

    Google Scholar 

  9. Yan X G, Spurgeon S K, Edwards C. State and parameter estimation for nonlinear delay systems using sliding mode techniques. IEEE Trans Autom Control, 2013, 58: 1023–1029

    Article  MathSciNet  MATH  Google Scholar 

  10. Yan X G, Lam J, Xie L H. Robust observer design for non-linear interconnected systems using structural characteristics. Int J Control, 2003, 76: 741–746

    Article  MathSciNet  MATH  Google Scholar 

  11. Mochalov A V, Kazantasev A V. Use of ring laser units for measurement of the moving object deformations. In: Proceedings of the 2nd International Conference on Lasers Measurement and Information Transfer, St. Petersburg, 2002. 85–92

    Chapter  Google Scholar 

  12. Groves P D. Optimising the transfer alignment of weapon INS. J Navigation. 2003, 56: 323–335

    Article  Google Scholar 

  13. Kain J, Cloutier J. Rapid transfer alignment for tactical weapon application. In: Proceedings of AIAA Guidance, Navigation and Control Conference, Boston, 1989. 1290–1300

    Google Scholar 

  14. Spalding K. An efficient rapid transfer alignment filter. In: Proceedings of AIAA Guidance, Navigation and Control Conference, Hilton Head Island, 1992. 1276–1286

    Google Scholar 

  15. Yan Z P, Lan J, Zhang Y C. Hybrid-system-based multiple-model approach for transfer alignment with dynamic flexure in IIN. In: Proceedings of International Conference on Multisensor Fusion and Information Integration for Intelligent Systems, Beijing, 2014. 1–8

    Google Scholar 

  16. Gebre-Egziabher D, Shao Y F. Model for JPALS/SRGPSflexure and attitude error allocation. IEEE Trans Aerosp Electron Syst, 2010, 46: 483–495

    Article  Google Scholar 

  17. Gao Q W, Zhao G R, Wang X B. Transfer alignment error compensator design for flexure and lever-arm effect. In: Proceedings of the 4th IEEE Conference on Industrial Electronics and Applications, Xi’an, 2009. 1819–1822

    Google Scholar 

  18. Wu W, Chen S, Qin S Q. Online estimation of ship dynamic flexure model parameters for transfer alignment. IEEE Trans Control Syst Technol, 2013, 21: 1666–1678

    Article  Google Scholar 

  19. Gong X L, Fan W, Fang J C. An innovationalrransfer alignment method based on parameter identification UKF for airborne distributed POS. Measurement, 2014, 58: 103–114

    Article  Google Scholar 

  20. Fearnhead P, Wyncoll D, Tawn J. A sequential smoothing algorithm with linear computational cost. Biometrika, 2010, 97: 447–464

    Article  MathSciNet  MATH  Google Scholar 

  21. Meditch J. A survey of data smoothing for linear and nonlinear dynamic systems. Automatica, 1973, 9: 151–162

    Article  MathSciNet  MATH  Google Scholar 

  22. Simon D. Optimal State Estimation, Kalman, H∞ and Nonlinear Approaches. New Jersey: John Wiley and Sons, 2006

    Book  Google Scholar 

  23. Sarkka S. Unscented rauch–tung–striebel smoother. IEEE Trans Autom Control, 2008, 53: 845–849

    Article  MathSciNet  MATH  Google Scholar 

  24. Titterton D, Weston J. Strapdown Inertial Navigation Technology. 2nd ed. London: Institution of Engineering and Technology, 2004

    Book  Google Scholar 

  25. Bekir E. Introduction to Modern Navigation Systems. Singapore: World Scientific, 2007

    Book  MATH  Google Scholar 

  26. Goshen-Meskin D, Bar-itzhack I Y. Unified approach to inertial navigation system error modeling. J Guid Control Dynam, 1992, 15: 648–653

    Article  MATH  Google Scholar 

  27. Zhang H T, Rong J, Zhong X C. The performance comparison and algorithm analysis of first order EKF, second order EKF and smoother for GPS/DR navigation. In: Proceedings of IEEE International Conference on Communication Technology, Hangzhou, 2008. 432–437

    Google Scholar 

  28. Allerton D J, Jia H M. Redundant multi-mode filter for a navigation system. IEEE Trans Aerosp Electron Syst, 2007, 43: 371–391

    Article  Google Scholar 

  29. Lu Y, Cheng X H. Random misalignment and lever arm vector online estimation in shipborne aircraft transfer alignment. Measurement, 2014, 47: 756–764

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61473020, 61421063, 61233005), National High Technology Research and Development Program of China (863 Program) (Grant Nos. 2015AA124001, 2015AA124002), and International (Regional) Cooperation and Communication Project (Grant No. 61661136007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Chen, L., Fang, J. et al. A transfer alignment method for airborne distributed POS with three-dimensional aircraft flexure angles. Sci. China Inf. Sci. 61, 092204 (2018). https://doi.org/10.1007/s11432-017-9213-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-017-9213-9

Keywords

Navigation