Skip to main content
Log in

Systematic calibration of drift diffusion model for InGaAs MOSFETs in quasi-ballistic regime

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper proposes a systematic procedure to calibrate the parameters of the drift-diffusion (DD) model for a performance evaluation of InGaAs MOSFETs in the quasi-ballistic regime. The simulation results of a deterministic multi-subband Boltzmann transport equation (BTE) solver serve as the standard. The DD model is calibrated both under low and high electric fields. The electrostatic characteristics, low field mobility model, and high field saturation model are calibrated in proper sequence, and a good agreement among the drive current, carrier distribution, and velocity distribution are achieved between the results of the calibrated DD model and the BTE solver. The proposed calibration procedure can also be employed in devices made of other materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deleonibus S. Looking into the future of Nanoelectronics in the Diversification Efficient Era. Sci China Inf Sci, 2016, 59: 061401

    Article  Google Scholar 

  2. Cheng K, Khakifirooz A. Fully depleted SOI (FDSOI) technology. Sci China Inf Sci, 2016, 59: 061402

    Article  Google Scholar 

  3. Natori K, Iwai H, Kakushima K. Anomalous degradation of low-field mobility in short-channel metal-oxidesemiconductor field-effect transistors. J Appl Phys, 2015, 118: 234502

    Article  Google Scholar 

  4. Khandelwal S, Agarwal H, Kushwaha P, et al. Unified compact model covering drift-diffusion to ballistic carrier transport. IEEE Electron Device Lett, 2016, 37: 134–137

    Article  Google Scholar 

  5. Jin S, Pham A-T, Choi W, et al. Performance evaluation of FinFETs: from multisubband BTE to DD calibration. In: Proceedings of International Conference Simulation Semicond Processes Devices, 2016. 109–116

    Google Scholar 

  6. Iwai H, Natori K, Shiraishi K, et al. Si nanowire FET and its modeling. Sci China Inf Sci, 2011, 54: 1004–1011

    Article  Google Scholar 

  7. Xie Q, Xu J. Recent research development of FinFETs. Sci China-Phys Mech Astron, 2016, 59: 127331

    Article  Google Scholar 

  8. Takagi S, Takenaka M. Ge/III-V MOS device technologies for low power integrated systems. In: Proceedings of Solid State Device Research Conference (ESSDERC), 2015. 20–25

    Google Scholar 

  9. Vardi A, Zhao X, del Alamo J A. Quantum-size effects in sub 10-nm fin width InGaAs FinFETs. In: Proceedings of IEEE International Electron Devices Meeting, 2015. 1–4

    Google Scholar 

  10. Kim D-H, Kim T-W, Back R H, et al. High-performance III-V devices for future logic applications. In: Proceedings of IEEE International Electron Devices Meeting, 2014. 1–4

    Google Scholar 

  11. del Alamo J A. Nanometre-scale electronics with III-V compound semiconductors. Nature, 2011, 479: 317–323

    Article  Google Scholar 

  12. Beneventi G B, Reggiani S, Gnudi A, et al. A TCAD low-field electron mobility model for thin-body InGaAs on InP MOSFETs calibrated on experimental characteristics. IEEE Trans Electron Devices, 2015, 62: 3645–3652

    Article  Google Scholar 

  13. Lu T, Du G, Liu X, et al. A finite volume method for the multi subband boltzmann equation with realistic 2D scattering in double gate MOSFETs. Commun Commut Phys, 2011, 10: 305–338

    Article  MATH  Google Scholar 

  14. Di S, Zhao K, Lu T, et al. Investigation of transient responses of nanoscale transistors by deterministic solution of the time-dependent BTE. J Comput Electron, 2016, 15: 770–777

    Article  Google Scholar 

  15. Di S, Shen L, Chang P, et al. Performance comparison of Si, III-V double-gate n-type MOSFETs by deterministic Boltzmann transport equation solver. Jpn J Appl Phys, 2017, 56: 04CD08

    Article  Google Scholar 

  16. Smirnov S. Physical modeling of electron transport in strained silicon and silicon-germanium. Dissertation for Ph.D. Degree. Wien: Fakultät für Elektrotechnik und Informationstechnik, 2003

    Google Scholar 

  17. Esseni D. On the modeling of surface roughness limited mobility in SOI MOSFETs and its correlation to the transistor effective field. IEEE Trans Electron Dev, 2004, 51: 394–401

    Article  Google Scholar 

  18. Fischetti M V. Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I - Homogeneous transport. IEEE Trans Electron Devices, 1991, 38: 634–649

    Article  Google Scholar 

  19. Ancona M G, Iafrate G J. Quantum correction to the equation of state of an electron gas in a semiconductor. Phys Rev B, 1989, 39: 9536–9540

    Article  Google Scholar 

  20. Shur M S. Low ballistic mobility in submicron HEMTs. IEEE Electron Device Lett, 2002, 23: 511–513

    Article  Google Scholar 

  21. Lundstrom M. Elementary scattering theory of the Si MOSFET. IEEE Electron Device Lett, 1997, 18: 361–363

    Article  Google Scholar 

  22. Rahman A, Lundstrom M S. A compact scattering model for the nanoscale double-gate MOSFET. IEEE Trans Electron Dev, 2002, 49: 481–489

    Article  Google Scholar 

  23. Canali C, Majni G, Minder R, et al. Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature. IEEE Trans Electron Dev, 1975, 22: 1045–1047

    Article  Google Scholar 

  24. Barnes J J, Lomax R J, Haddad G I. Finite-element simulation of GaAs MESFET’s with lateral doping profiles and submicron gates. IEEE Trans Electron Dev, 1976, 23: 1042–1048

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61674008, 61421005, 61404005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Zhao or Xiaoyan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, S., Shen, L., Chang, P. et al. Systematic calibration of drift diffusion model for InGaAs MOSFETs in quasi-ballistic regime. Sci. China Inf. Sci. 62, 62406 (2019). https://doi.org/10.1007/s11432-017-9472-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-017-9472-x

Keywords

Navigation