Skip to main content

Advertisement

Log in

Characterizing differential support of vectorial Boolean functions using the Walsh transform

  • Letter
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Biham E, Shamir A. Differential cryptanalysis of DES-like cryptosystems. J Cryptol, 1991, 4: 3–72

    Article  MathSciNet  Google Scholar 

  2. Qu L J, Tan Y, Tan C H, et al. Constructing differentially 4-uniform permutations over F22k via the switching method. IEEE Trans Inform Theor, 2013, 59: 4675–4686

    Article  Google Scholar 

  3. Tang D, Carlet C, Tang X. Differentially 4-uniform bijections by permuting the inverse function. Des Codes Cryptogr, 2015, 77: 117–141

    Article  MathSciNet  Google Scholar 

  4. Tu Z, Zeng X, Zhang Z. More permutation polynomials with differential uniformity six. Sci China Inf Sci, 2018, 61: 038104

    Article  Google Scholar 

  5. Zha Z B, Hu L, Sun S W, et al. Further results on differentially 4-uniform permutations over F22m. Sci China Math, 2015, 58: 1577–1588

    Article  MathSciNet  Google Scholar 

  6. Matsui L. Linear cryptanalysis method for DES cipher. In: Advances in Cryptology–EUROCRYPT’93. Berlin: Springer, 1994. 386–397

    Google Scholar 

  7. Chabaud F, Vaudenay S. Links between differential and linear cryptanalysis. In: Proceedings of EUROCRYPT’94, 1995. 950: 356–365

    MathSciNet  MATH  Google Scholar 

  8. Carlet C. Characterizations of the differential uniformity of vectorial functions by the Walsh transform. IEEE Trans Inform Theor, 2018, 64: 6443–6453

    Article  MathSciNet  Google Scholar 

  9. Blondeau C, Canteaut A, Charpin P. Differential properties of power functions. In: Proceedings of the 2010 IEEE International Symposium on Information Theory, Austin, 2010. 10: 2478–2482

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61672355, 61672166, U19A2066), National Key Research & Development Plan(Grant No. 2019YFB2101703), Shanghai Excellent Academic Leader (Grant No. 16XD1400200), and Shanghai Innovation Plan of Science & Technology (Grant No. 16JC1402700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Kan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Gao, J. & Kan, H. Characterizing differential support of vectorial Boolean functions using the Walsh transform. Sci. China Inf. Sci. 63, 139108 (2020). https://doi.org/10.1007/s11432-018-9614-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-018-9614-3