Skip to main content
Log in

Measurement-device-independent quantum secret sharing and quantum conference based on Gaussian cluster state

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Cluster state is the basic resource for one-way quantum computation and a valuable resource for establishing quantum network, because it has a flexible and varied composition form. We present measurement-device-independent quantum secret sharing (QSS) and quantum conference (QC) schemes based on continuous variable (CV) four-mode cluster state with different structures. The users of the protocol prepare their own Einstein-Podolsky-Rosen (EPR) states, respectively. One mode of these EPR states is sent to an untrusted relay where a generalized Bell measurement creates different types of CV cluster states among four users, while the other mode is kept at their own station. We show that a shared secret key for QSS and QC schemes is distilled based on the shared quantum correlation among four users. QC and four users QSS are implemented based on the star shape CV cluster state. QSS with three users are implemented based on the linear or square shape CV cluster states. The results show that the secure transmission distance for an asymmetric network, where the transmission distances between the users and relay are different, is longer than that of a symmetric network, where the transmission distances between the users and relay are the same. The presented schemes provide concrete references for establishing quantum network with the CV cluster state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195

    Article  MATH  Google Scholar 

  2. Weedbrook C, Pirandola S, García-Patrón R, et al. Gaussian quantum information. Rev Mod Phys, 2012, 84: 621–669

    Article  Google Scholar 

  3. Wang S, Chen W, Yin Z Q, et al. Field and long-term demonstration of a wide area quantum key distribution network. Opt Express, 2014, 22: 21739

    Article  Google Scholar 

  4. Wang S, Chen W, Guo J F, et al. 2 GHz clock quantum key distribution over 260 km of standard telecom fiber. Opt Lett, 2012, 37: 1008

    Article  Google Scholar 

  5. Wang S, Yin Z Q, Chau H F, et al. Proof-of-principle experimental realization of a qubit-like qudit-based quantum key distribution scheme. Quantum Sci Technol, 2018, 3: 025006

    Article  Google Scholar 

  6. Yin Z Q, Wang S, Chen W, et al. Improved security bound for the round-robin-differential-phase-shift quantum key distribution. Nat Commun, 2018, 9: 457

    Article  Google Scholar 

  7. Diamanti E, Lo H K, Qi B, et al. Practical challenges in quantum key distribution. Npj Quantum Inf, 2016, 2: 16025

    Article  Google Scholar 

  8. Braunstein S L, Pirandola S. Side-channel-free quantum key distribution. Phys Rev Lett, 2012, 108: 130502

    Article  Google Scholar 

  9. Wang S, Chen W, Yin Z Q, et al. Practical gigahertz quantum key distribution robust against channel disturbance. Opt Lett, 2018, 43: 2030

    Article  Google Scholar 

  10. Wang S, Yin Z Q, Chen W, et al. Experimental demonstration of a quantum key distribution without signal disturbance monitoring. Nat Photon, 2015, 9: 832–836

    Article  Google Scholar 

  11. Acín A, Brunner N, Gisin N, et al. Device-independent security of quantum cryptography against collective attacks. Rhys Rev Lett, 2007, 98: 230501

    Article  Google Scholar 

  12. Wang C, Yin Z Q, Wang S, et al. Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica, 2017, 4: 1016

    Article  Google Scholar 

  13. Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution. Phys Rev Lett, 2012, 108: 130503

    Article  Google Scholar 

  14. Lai H, Luo M X, Pieprzyk J, et al. High-rate and high-capacity measurement-device-independent quantum key distribution with Fibonacci matrix coding in free space. Sci China Inf Sci, 2018, 61: 062501

    Article  Google Scholar 

  15. Rubenok A, Slater J A, Chan P, et al. Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Phys Rev Lett, 2013, 111: 130501

    Article  Google Scholar 

  16. Ferreira da Silva T, Vitoreti D, Xavier G B, et al. Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys Rev A, 2013, 88: 052303

    Article  Google Scholar 

  17. Tang Z, Liao Z, Xu F, et al. Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys Rev Lett, 2014, 112: 190503

    Article  Google Scholar 

  18. Yin H L, Chen T Y, Yu Z W, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys Rev Lett, 2016, 117: 190501

    Article  Google Scholar 

  19. Braunstein S L, van Loock P. Quantum information with continuous variables. Rev Mod Phys, 2005, 77: 513–577

    Article  MathSciNet  MATH  Google Scholar 

  20. Li Z, Zhang Y C, Xu F, et al. Continuous-variable measurement-device-independent quantum key distribution. Phys Rev A, 2014, 89: 052301

    Article  Google Scholar 

  21. Zhang Y C, Li Z, Yu S, et al. Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys Rev A, 2014, 90: 052325

    Article  Google Scholar 

  22. Grosshans F, Cerf N J, Wenger J, et al. Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables. Quantum Inf Comput, 2003, 3: 535–552

    MathSciNet  MATH  Google Scholar 

  23. Pirandola S, Ottaviani C, Spedalieri G, et al. High-rate measurement-device-independent quantum cryptography. Nat Photon, 2015, 9: 397–402

    Article  Google Scholar 

  24. Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Phys Rev Lett, 1999, 83: 648–651

    Article  Google Scholar 

  25. Hillery M, Bužek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59: 1829–1834

    Article  MathSciNet  MATH  Google Scholar 

  26. Gottesman D. Theory of quantum secret sharing. Phys Rev A, 2000, 61: 042311

    Article  MathSciNet  Google Scholar 

  27. Dou Z, Xu G, Chen X B, et al. A secure rational quantum state sharing protocol. Sci China Inf Sci, 2018, 61: 022501

    Article  MathSciNet  Google Scholar 

  28. Zhao Y, Fung C H F, Qi B, et al. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys Rev A, 2008, 78: 042333

    Article  Google Scholar 

  29. van Loock P, Braunstein S L. Multipartite entanglement for continuous variables: a quantum teleportation network. Rhys Rev Lett, 2000, 84: 3482–3485

    Article  Google Scholar 

  30. Zhang J, Braunstein S L. Continuous-variable Gaussian analog of cluster states. Phys Rev A, 2006, 73: 032318

    Article  Google Scholar 

  31. Briegel H J, Raussendorf R. Persistent entanglement in arrays of interacting particles. Phys Rev Lett, 2001, 86: 910–913

    Article  Google Scholar 

  32. van Loock P, Weedbrook C, Gu M. Building Gaussian cluster states by linear optics. Phys Rev A, 2007, 76: 032321

    Article  Google Scholar 

  33. Lv S, Jing J. Generation of quadripartite entanglement from cascaded four-wave-mixing processes. Phys Rev A, 2017, 96: 043873

    Article  Google Scholar 

  34. Wang H, Zheng Z, Wang Y, et al. Generation of tripartite entanglement from cascaded four-wave mixing processes. Opt Express, 2016, 24: 23459

    Article  Google Scholar 

  35. Su X, Zhao Y, Hao S, et al. Experimental preparation of eight-partite cluster state for photonic qumodes. Opt Lett, 2012, 37: 5178

    Article  Google Scholar 

  36. Chen M, Menicucci N C, Pfister O. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys Rev Lett, 2014, 112: 120505

    Article  Google Scholar 

  37. Yokoyama S, Ukai R, Armstrong S C, et al. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nat Photon, 2013, 7: 982–986

    Article  Google Scholar 

  38. Raussendorf R, Briegel H J. A one-way quantum computer. Phys Rev Lett, 2001, 86: 5188–5191

    Article  MATH  Google Scholar 

  39. Walther P, Resch K J, Rudolph T, et al. Experimental one-way quantum computing. Nature, 2005, 434: 169–176

    Article  Google Scholar 

  40. Menicucci N C, van Loock P, Gu M, et al. Universal quantum computation with continuous-variable cluster states. Rhys Rev Lett, 2006, 97: 110501

    Article  Google Scholar 

  41. Gu M, Weedbrook C, Menicucci N C, et al. Quantum computing with continuous-variable clusters. Phys Rev A, 2009, 79: 062318

    Article  Google Scholar 

  42. Loock P. Examples of Gaussian cluster computation. J Opt Soc Am B, 2007, 24: 340–346

    Article  Google Scholar 

  43. Wang Y, Su X, Shen H, et al. Toward demonstrating controlled-X operation based on continuous-variable four-partite cluster states and quantum teleporters. Phys Rev A, 2010, 81: 022311

    Article  Google Scholar 

  44. Ukai R, Iwata N, Shimokawa Y, et al. Demonstration of unconditional one-way quantum computations for continuous variables. Phys Rev Lett, 2011, 106: 240504

    Article  Google Scholar 

  45. Su X, Hao S, Deng X, et al. Gate sequence for continuous variable one-way quantum computation. Nat Commun, 2013, 4: 2828

    Article  Google Scholar 

  46. Wang L, Lv S, Jing J. Quantum steering in cascaded four-wave mixing processes. Opt Express, 2017, 25: 17457

    Article  Google Scholar 

  47. Lau H K, Weedbrook C. Quantum secret sharing with continuous-variable cluster states. Phys Rev A, 2013, 88: 042313

    Article  Google Scholar 

  48. Deng X, Xiang Y, Tian C, et al. Demonstration of monogamy relations for einstein-podolsky-rosen steering in gaussian cluster states. Phys Rev Lett, 2017, 118: 230501

    Article  Google Scholar 

  49. Wu Y, Zhou J, Gong X, et al. Continuous-variable measurement-device-independent multipartite quantum communication. Phys Rev A, 2016, 93: 022325

    Article  Google Scholar 

  50. Ottaviani C, Lupo C, Laurenza R, et al. High-rate secure quantum conferencing. 2017. ArXiv: 1709.06988

  51. Zhang J. Graphical description of local Gaussian operations for continuous-variable weighted graph states. Phys Rev A, 2008, 78: 052307

    Article  Google Scholar 

  52. Su X, Tan A, Jia X, et al. Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables. Phys Rev Lett, 2007, 98: 070502

    Article  Google Scholar 

  53. Yukawa M, Ukai R, van Loock P, et al. Experimental generation of four-mode continuous-variable cluster states. Phys Rev A, 2008, 78: 012301

    Article  Google Scholar 

  54. Usenko V C, Grosshans F. Unidimensional continuous-variable quantum key distribution. Phys Rev A, 2015, 92: 062337

    Article  MathSciNet  Google Scholar 

  55. Wang X, Liu W, Wang P, et al. Experimental study on all-fiber-based unidimensional continuous-variable quantum key distribution. Phys Rev A, 2017, 95: 062330

    Article  Google Scholar 

  56. Beimel A. Secret-sharing schemes: a survey. In: Proceedings of the 3rd International Conference on Coding and Cryptology (IWCC’11), Heidelberg, 2011. 11–46

  57. Goyal V, Kumar A. Non-malleable secret sharing. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, New York, 2018. 685–698

  58. Lance A M, Symul T, Bowen W P, et al. Continuous variable (2, 3) threshold quantum secret sharing schemes. New J Phys, 2003, 5: 4

    Article  MathSciNet  Google Scholar 

  59. Adesso G, Illuminati F. Entanglement in continuous-variable systems: recent advances and current perspectives. J Phys A-Math Theor, 2007, 40: 7821–7880

    Article  MathSciNet  MATH  Google Scholar 

  60. Horodecki M, Horodecki P, Horodecki R. Separability of mixed states: necessary and sufficient conditions. Phys Lett A, 1996, 223: 1–8

    Article  MathSciNet  MATH  Google Scholar 

  61. Simon R. Peres-Horodecki separability criterion for continuous variable systems. Phys Rev Lett, 2000, 84: 2726–2729

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11504024, 11834010, 61602045, 11522433, 61502041, 61602046), National Key Research and Development Program of China (Grant No. 2016YFA0302600, 2018YFA0306404, 2016YFA0301402), and Program of Youth Sanjin Scholar.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Wang or Xiaolong Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Tian, C., Su, Q. et al. Measurement-device-independent quantum secret sharing and quantum conference based on Gaussian cluster state. Sci. China Inf. Sci. 62, 72501 (2019). https://doi.org/10.1007/s11432-018-9705-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-018-9705-x

Keywords

Navigation