Skip to main content
Log in

Nonvolatile memristor based on heterostructure of 2D room-temperature ferroelectric α-In2Se3 and WSe2

  • Research Paper
  • Special Focus on Two-Dimensional Materials and Device Applications
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) ferroelectricity is considered to have significant potential for information storage in the future. Semiconducting ferroelectrics that are stable at room temperature afford many possibilities for the assembly of various high-performance heterostructures and fabricating multifuntional devices. Herein, we report the synthesis of a stable van der Waals (vdW) single-crystal semiconductor α-In2Se3. Piezoresponse force microscopy (PFM) measurements demonstrated the out-of-plane ferroelectricity in ∼15 layers α-In2Se3 at room temperature. Both ferroelectric domains with opposite polarization and the tested amplitude and phase curve proved that this semiconductor exhibits hysteresis behavior during polarization. In the α-In2Se3/WSe2 vertical heterostructure device, the switchable diode effect and nonvolatile memory phenomenon showed a high on/off ratio and a small switching voltage. The distinct resistance switches were further analyzed by band alignment of the heterostructure under different polarizations by first principle calculations. Nonvolatile memory based on vdW ferroelectric heterostructure could provide a novel platform for developing 2D room-temperature ferroelectrics in information storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garcia V, Fusil S, Bouzehouane K, et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature, 2009, 460: 81–84

    Article  Google Scholar 

  2. Wen Z, Li C, Wu D, et al. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat Mater, 2013, 12: 617–621

    Article  Google Scholar 

  3. Xu R J, Liu S, Grinberg I, et al. Ferroelectric polarization reversal via successive ferroelastic transitions. Nat Mater, 2015, 14: 79–86

    Article  Google Scholar 

  4. Ge R J, Wu X H, Kim M, et al. Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett, 2018, 18: 434–441

    Article  Google Scholar 

  5. Scott J F. Applications of modern ferroelectrics. Science, 2007, 315: 954–959

    Article  Google Scholar 

  6. Morris M R, Pendlebury S R, Hong J, et al. Effect of internal electric fields on charge carrier dynamics in a ferroelectric material for solar energy conversion. Adv Mater, 2016, 28: 7123–7128

    Article  Google Scholar 

  7. Jones A M, Yu H, Ghimire N J, et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat Nanotech, 2013, 8: 634–638

    Article  Google Scholar 

  8. Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene. Rev Mod Phys, 2009, 81: 109–162

    Article  Google Scholar 

  9. Wang Y X, Xu N, Li D Y, et al. Thermal properties of two dimensional layered materials. Adv Funct Mater, 2017, 27: 1604134

    Article  Google Scholar 

  10. Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546: 270–273

    Article  Google Scholar 

  11. Si M, Su C J, Jiang C, et al. Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat Nanotech, 2018, 13: 24–28

    Article  Google Scholar 

  12. Wang X D, Zhou J, Song J H, et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett, 2006, 6: 2768–2772

    Article  Google Scholar 

  13. Tian B B, Liu L, Yan M, et al. A robust artificial synapse based on organic ferroelectric polymer. Adv Electron Mater, 2019, 5: 1800600

    Article  Google Scholar 

  14. Boyn S, Grollier J, Lecerf G, et al. Learning through ferroelectric domain dynamics in solid-state synapses. Nat Commun, 2017, 8: 14736

    Article  Google Scholar 

  15. Chang K, Liu J W, Lin H C, et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353: 274–278

    Article  Google Scholar 

  16. Si M W, Liao P Y, Qiu G, et al. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure. ACS Nano, 2018, 12: 6700–6705

    Article  Google Scholar 

  17. Liu F C, You L, Seyler K L, et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat Commun, 2016, 7: 12357

    Article  Google Scholar 

  18. Ding W J, Zhu J B, Wang Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat Commun, 2017, 8: 14956

    Article  Google Scholar 

  19. Zhou J D, Zeng Q S, Lv D H, et al. Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett, 2015, 15: 6400–6405

    Article  Google Scholar 

  20. Tao X, Gu Y. Crystalline-crystalline phase transformation in two-dimensional In2 Se3 thin layers. Nano Lett, 2013, 13: 3501–3505

    Article  Google Scholar 

  21. Cui J L, Wang L, Du Z L, et al. High thermoelectric performance of a defect in α-In2Se3-based solid solution upon substitution of Zn for In. J Mater Chem C, 2015, 3: 9069–9075

    Article  Google Scholar 

  22. Ho C H, Lin M H, Pan C C. Optical-memory switching and oxygen detection based on the CVT grown γ and α-phase In2Se3. Sens Actuat B-Chem, 2015, 209: 811–819

    Article  Google Scholar 

  23. Cui C, Hu W J, Yan X, et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett, 2018, 18: 1253–1258

    Article  Google Scholar 

  24. Xiao J, Zhu H Y, Wang Y, et al. Intrinsic two-dimensional ferroelectricity with Dipole locking. Phys Rev Lett, 2018, 120: 227601

    Article  Google Scholar 

  25. Zhou Y, Wu D, Zhu Y H, et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett, 2017, 17: 5508–5513

    Article  Google Scholar 

  26. Wan S Y, Li Y, Li W, et al. Room-temperature ferroelectricity and a switchable diode effect in two-dimensional α-In2Se3 thin layers. Nanoscale, 2018, 10: 14885–14892

    Article  Google Scholar 

  27. Lewandowska R, Bacewicz R, Filipowicz J, et al. Raman scattering in α-In2Se3 crystals. Mater Res Bull, 2001, 36: 2577–2583

    Article  Google Scholar 

  28. Tian B B, Wang J L, Fusil S, et al. Tunnel electroresistance through organic ferroelectrics. Nat Commun, 2016, 7: 11502

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61622406, 61571415), National Key Research and Development Program of China (Grant Nos. 2017YFA0207500, 2016YFB0700700), and Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongming Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Xiao, M., Cui, Y. et al. Nonvolatile memristor based on heterostructure of 2D room-temperature ferroelectric α-In2Se3 and WSe2. Sci. China Inf. Sci. 62, 220404 (2019). https://doi.org/10.1007/s11432-019-1474-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-1474-3

Keywords