Skip to main content
Log in

Chemical vapor deposition synthesis of two-dimensional freestanding transition metal oxychloride for electronic applications

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Two-dimensional transition metal oxychlorides (MOCl, M = Fe, Cr, V, Ti, Sc) with the metal-oxygen plane sandwiched by two layers of chloride ions possess many exotic physical properties. Nevertheless, it is of great challenge to grow two-dimensional single-crystal MOCl because polyvalent nature of transition metal elements usually gives rise to mixed oxyhalides compounds with distinct physical properties. Here, we take VOCl as an example to present a solution for synthesizing 2D freestanding MOCl with various thicknesses through chemical vapor deposition (CVD) method. The single crystal and elementary composition as well as elements ratio of as-grown samples have been characterized through measurements of X-ray diffraction, X-ray photoelectron spectroscopy and energy-dispersive spectroscopy, respectively. Furthermore, we demonstrate that 2D VOCl-based memristive devices show low power consumption and excellent device reliability due to the layered-structure and electrically insulating properties of 2D VOCl flakes. Besides, we utilize the feature of multilevel resistive switching that memristive devices exhibit to emulate depression and potentiation of synaptic plasticity. This method developed in this study may open up a new avenue for the growth of 2D MOCl with single crystal and pave the way for high-performance electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures. Science, 2016, 353: aac9439

    Article  Google Scholar 

  2. Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499: 419–425

    Article  Google Scholar 

  3. Sarkar D, Xie X J, Liu W, et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature, 2015, 526: 91–95

    Article  Google Scholar 

  4. Liu C S, Chen H W, Hou X, et al. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat Nanotechnol, 2019, 14: 662–667

    Article  Google Scholar 

  5. Wang M, Cai S H, Pan C, et al. Robust memristors based on layered two-dimensional materials. Nat Electron, 2018, 1: 130–136

    Article  Google Scholar 

  6. Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotech, 2011, 6: 147–150

    Article  Google Scholar 

  7. Gao A Y, Lai J W, Wang Y J, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat Nanotechnol, 2019, 14: 217–222

    Article  Google Scholar 

  8. Yin J B, Tan Z J, Hong H, et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat Commun, 2018, 9: 3311

    Article  Google Scholar 

  9. Wang F, Wang Z X, Yin L, et al. 2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection. Chem Soc Rev, 2018, 47: 6296–6341

    Article  Google Scholar 

  10. Li X M, Tao L, Chen Z F, et al. Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Appl Phys Rev, 2017, 4: 021306

    Article  Google Scholar 

  11. Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotech, 2012, 7: 699–712

    Article  Google Scholar 

  12. Wang J, Han J Y, Chen X Q, et al. Design strategies for two-dimensional material photodetectors to enhance device performance. Info Mat, 2019, 1: 33–53

    Google Scholar 

  13. Li J, Ding Y, Zhang D W, et al. Photodetectors based on two-dimensional materials and their van der Waals heterostructures. Acta Physico-Chimica Sin, 2019, 35: 1058

    Article  Google Scholar 

  14. Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotech, 2014, 9: 768–779

    Article  Google Scholar 

  15. Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nat Commun, 2014, 5: 5678

    Article  Google Scholar 

  16. Cai Z Y, Liu B L, Zou X L, et al. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem Rev, 2018, 118: 6091–6133

    Article  Google Scholar 

  17. Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2017, 2: 17033

    Article  Google Scholar 

  18. Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photon, 2016, 10: 216–226

    Article  Google Scholar 

  19. Zhang Y, Yao Y, Sendeku M G, et al. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv Mater, 2019, 31: 1901694

    Article  Google Scholar 

  20. Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater, 2017, 2: 16098

    Article  Google Scholar 

  21. Khazaei M, Ranjbar A, Arai M, et al. Electronic properties and applications of MXenes: a theoretical review. J Mater Chem C, 2017, 5: 2488

    Article  Google Scholar 

  22. Komarek A C, Taetz T, Fernández-Díaz M T, et al. Strong magnetoelastic coupling in VOCl: neutron and synchrotron powder x-ray diffraction study. Phys Rev B, 2009, 79: 104425

    Article  Google Scholar 

  23. Seidel A, Marianetti C A, Chou F C, et al. S = 1/2 chains and spin-Peierls transition in TiOCl. Phys Rev B, 2003, 67: 020405

    Article  Google Scholar 

  24. Shaz M, van Smaalen S, Palatinus L, et al. Spin-Peierls transition in TiOCl. Phys Rev B, 2005, 71: 100405

    Article  Google Scholar 

  25. Zhao L, Fernández-Díaz M T, Tjeng L H, et al. Oxyhalides: a new class of high-TC multiferroic materials. Sci Adv, 2016, 2: e1600353

    Article  Google Scholar 

  26. Miao N H, Xu B, Zhu L G, et al. 2D Intrinsic ferromagnets from van der Waals antiferromagnets. J Am Chem Soc, 2018, 140: 2417–2420

    Article  Google Scholar 

  27. Glawion S, Scholz M R, Zhang Y Z, et al. Electronic structure of the two-dimensional Heisenberg antiferromagnet VOCl: a multiorbital Mott insulator. Phys Rev B, 2009, 80: 155119

    Article  Google Scholar 

  28. Armand M, Coic L, Palvadeau P, et al. The M-0-X transition metal oxyhalides: a new class of lamellar cathode material. J Power Sources, 1978, 3: 137–144

    Article  Google Scholar 

  29. Gao P, Wall C, Zhang L, et al. Vanadium oxychloride as electrode material for sodium ion batteries. Electrochem Commun, 2015, 60: 180–184

    Article  Google Scholar 

  30. Gao P, Zhao X Y, Zhao-Karger Z, et al. Vanadium oxychloride/magnesium electrode systems for chloride ion batteries. ACS Appl Mater Interfaces, 2014, 6: 22430–22435

    Article  Google Scholar 

  31. Gao P, Reddy M A, Mu X, et al. VOCl as a cathode for rechargeable chloride ion batteries. Angew Chem Int Ed, 2016, 55: 4285–4290

    Article  Google Scholar 

  32. Sidwick N V. The chemical elements and their compounds. J Chem Educ, 1950, 27: 529

    Article  Google Scholar 

  33. Ji Q Q, Li C, Wang J L, et al. Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. Nano Lett, 2017, 17: 4908–4916

    Article  Google Scholar 

  34. Zhou J H, Wang L, Yang M Y, et al. Hierarchical VS2 nanosheet assemblies: a universal host material for the reversible storage of Alkali metal ions. Adv Mater, 2017, 29: 1702061

    Article  Google Scholar 

  35. Yuan J T, Wu J J, Hardy W J, et al. Facile synthesis of single crystal vanadium disulfide nanosheets by chemical vapor deposition for efficient hydrogen evolution reaction. Adv Mater, 2015, 27: 5605–5609

    Article  Google Scholar 

  36. Phan H D, Kim Y, Lee J, et al. Ultraclean and direct transfer of a wafer-scale MoS2 thin film onto a plastic substrate. Adv Mater, 2017, 29: 1603928

    Article  Google Scholar 

  37. Chen Y, Gong X L, Gai J G. Progress and challenges in transfer of large-area graphene films. Adv Sci, 2016, 3: 1500343

    Article  Google Scholar 

  38. Park J, Choudhary N, Smith J, et al. Thickness modulated MoS2 grown by chemical vapor deposition for transparent and flexible electronic devices. Appl Phys Lett, 2015, 106: 012104

    Article  Google Scholar 

  39. Lin Y C, Zhang W, Huang J K, et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 2012, 4: 6637–6641

    Article  Google Scholar 

  40. Cullity B D, Weymouth J W. Elements of X-ray diffraction. Am J Phys, 1957, 25: 394–395

    Article  Google Scholar 

  41. Kroemer H. Nobel lecture: quasielectric fields and band offsets: teaching electrons new tricks. Rev Mod Phys, 2001, 73: 783–793

    Article  Google Scholar 

  42. Zhao H, Dong Z P, Tian H, et al. Atomically thin femtojoule memristive device. Adv Mater, 2017, 29: 1703232

    Article  Google Scholar 

  43. Tian H, Zhao L F, Wang X F, et al. Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing. ACS Nano, 2017, 11: 12247–12256

    Article  Google Scholar 

  44. Zhao X L, Liu S, Niu J B, et al. Confining cation injection to enhance CBRAM performance by nanopore graphene layer. Small, 2017, 13: 1603948

    Article  Google Scholar 

  45. Zhao X L, Ma J, Xiao X H, et al. Breaking the current-retention dilemma in cation-based resistive switching devices utilizing graphene with controlled defects. Adv Mater, 2018, 30: 1705193

    Article  Google Scholar 

  46. Ge R J, Wu X H, Kim M, et al. Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett, 2018, 18: 434–441

    Article  Google Scholar 

  47. Qian K, Tay R Y, Nguyen V C, et al. Hexagonal boron nitride thin film for flexible resistive memory applications. Adv Funct Mater, 2016, 26: 2176–2184

    Article  Google Scholar 

  48. Jo S H, Chang T, Ebong I, et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett, 2010, 10: 1297–1301

    Article  Google Scholar 

  49. Ohno T, Hasegawa T, Tsuruoka T, et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat Mater, 2011, 10: 591–595

    Article  Google Scholar 

  50. Shi Y Y, Liang X H, Yuan B, et al. Electronic synapses made of layered two-dimensional materials. Nat Electron, 2018, 1: 458–465

    Article  Google Scholar 

  51. Deng Y, Luo Z, Conrad N J, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano, 2014, 8: 8292–8299

    Article  Google Scholar 

  52. Xu R J, Jang H, Lee M H, et al. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett, 2019, 19: 2411–2417

    Article  Google Scholar 

  53. Sangwan V K, Lee H S, Bergeron H, et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature, 2018, 554: 500–504

    Article  Google Scholar 

  54. Yang J J, Strukov D B, Stewart D R. Memristive devices for computing. Nat Nanotech, 2013, 8: 13–24

    Article  Google Scholar 

  55. Zhu J D, Yang Y C, Jia R D, et al. Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics. Adv Mater, 2018, 30: 1800195

    Article  Google Scholar 

  56. Yan X, Zhao Q, Chen A P, et al. Vacancy-induced synaptic behavior in 2D WS2 nanosheet based memristor for low-power neuromorphic computing. Small, 2019, 15: 1901423

    Article  Google Scholar 

  57. Zhou F C, Zhou Z, Chen J W, et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat Nanotechnol, 2019, 14: 776–782

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Key Basic Research Program of China (Grant No. 2015CB921600), National Natural Science Foundation of China (Grant Nos. 61974176, 61574076), Collaborative Innovation Center of Advanced Microstructures, Natural Science Foundation of Jiangsu Province (Grant Nos. BK20180330, BK20150055), and Fundamental Research Funds for the Central Universities (Grant Nos. 020414380122, 020414380084).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi-Jun Liang or Feng Miao.

Electronic supplementary material

11432_2019_2653_MOESM1_ESM.pdf

Chemical Vapor Deposition Synthesis of Two-dimensional Freestanding Transition Metal Oxychloride for Electronic Applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Wang, P., Wang, CY. et al. Chemical vapor deposition synthesis of two-dimensional freestanding transition metal oxychloride for electronic applications. Sci. China Inf. Sci. 62, 220407 (2019). https://doi.org/10.1007/s11432-019-2653-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2653-9

Keywords

Navigation