Skip to main content
Log in

Effect on ion-trap quantum computers from the quantum nature of the driving field

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this study, we evaluate the effect on ion-trap quantum computers (QCs) from the quantum nature of the driving field, and propose a theoretical limit for ion-trap QCs that may impact the design of quantum algorithms and realization of practical QCs. We obtain, for the first time, the permitted depth of logical operation for fault-tolerant ion-trap QCs. Physically, we provide an exact (full-quantum) description of the QC system, and present for the first time its time evolution after gate operations; mathematically, we solve problems such as certain summations of trigonometric series with any given precision. Comparing the actual state after CNOT gates driven by a quantized field with the expected state, we obtain the failure probability and estimate that the number of CNOT gates on the same pair of physical qubits is not more than 102 in one error-correction period, which is a physical limit that cannot be easily overcome. The conclusion can help determine the number of CNOT operations between coding and decoding in one error-correction period and can be used as a reference for quantum algorithm design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shor P W. Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, 1994. 124–134

  2. Grover L K. A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, 1996. 212–219

  3. Deutsch D, Jozsa R. Rapid solution of problems by quantum computation. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1992. 553–558

  4. Bernstein E, Vazirani U. Quantum complexity theory. SIAM J Comput, 1997, 26: 1411–1473

    Article  MathSciNet  Google Scholar 

  5. Simon D R. On the power of quantum computation. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994. 116–123

  6. Rivest R L, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems. Commun ACM, 1978, 21: 120–126

    Article  MathSciNet  Google Scholar 

  7. Elgamal T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans Inform Theor, 1985, 31: 469–472

    Article  MathSciNet  Google Scholar 

  8. Cirac J I, Zoller P. Quantum computations with cold trapped ions. Phys Rev Lett, 1995, 74: 4091–4094

    Article  Google Scholar 

  9. Linke N M, Maslov D, Roetteler M, et al. Experimental comparison of two quantum computing architectures. Proc Natl Acad Sci U S A, 2017, 114: 3305–3310

    Article  Google Scholar 

  10. Monroe C, Raussendorf R, Ruthven A, et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys Rev A, 2014, 89: 022317

    Article  Google Scholar 

  11. Piltz C, Sriarunothai T, Varón A F, et al. A trapped-ion-based quantum byte with 10(-5) next-neighbour cross-talk. Nat Commun, 2014, 5: 4679

    Article  Google Scholar 

  12. Khromova A, Piltz C, Scharfenberger B, et al. Designer spin pseudomolecule implemented with trapped ions in a magnetic gradient. Phys Rev Lett, 2012, 108: 220502

    Article  Google Scholar 

  13. Bowler R, Gaebler J, Lin Y, et al. Coherent diabatic ion transport and separation in a multizone trap array. Phys Rev Lett, 2012, 109: 080502

    Article  Google Scholar 

  14. Pagano G, Hess P W, Kaplan H B, et al. Cryogenic trapped-ion system for large scale quantum simulation. Quantum Sci Tech, 2018, 41

  15. Harty T P, Allcock D T C, Ballance C J, et al. High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys Rev Lett, 2014, 113: 220501

    Article  Google Scholar 

  16. Ballance C J, Harty T P, Linke N M, et al. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys Rev Lett, 2016, 117: 060504

    Article  Google Scholar 

  17. Gaebler J P, Tan T R, Lin Y, et al. High-fidelity universal gate set for 9Be+ ion qubits. Phys Rev Lett, 2016, 117: 060505

    Article  Google Scholar 

  18. Leung P H, Landsman K A, Figgatt C, et al. Robust 2-qubit gates in a linear ion crystal using a frequency-modulated driving force. Phys Rev Lett, 2018, 120: 020501

    Article  Google Scholar 

  19. Monz T, Nigg D, Martinez E A, et al. Realization of a scalable Shor algorithm. Science, 2016, 351: 1068–1070

    Article  MathSciNet  Google Scholar 

  20. Gea-Banacloche J. Some implications of the quantum nature of laser fields for quantum computations. Phys Rev A, 2002, 65: 022308

    Article  Google Scholar 

  21. van Enk S J, Kimble H J. On the classical character of control fields in quantum information processing. Quantum Inf Comput, 2002, 21: 1–13

    MathSciNet  MATH  Google Scholar 

  22. Yang L, Yang B Y, Chen Y F. Full quantum treatment of rabi oscillation driven by a pulse train and its application in ion-trap quantum computation. IEEE J Quantum Electron, 2013, 49: 641–651

    Article  Google Scholar 

  23. Yang L, Chen Y F. A decoherent limit of fault-tolerant quantum computation driven by coherent fields. In: Proceedings of SPIE, 2007. 682708

  24. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2010

    Book  Google Scholar 

  25. Knill E. Quantum computing with realistically noisy devices. Nature, 2005, 434: 39–44

    Article  Google Scholar 

  26. Milburn G J, Schneider S, James D F. Ion trap quantum computing with warm ions. Fortschr Phys, 2000, 48: 801–810

    Article  Google Scholar 

  27. Sørensen A, Mølmer K. Quantum computation with ions in thermal motion. Phys Rev Lett, 1999, 82: 1971–1974

    Article  Google Scholar 

  28. Häffner H, Roos C F, Blatt R. Quantum computing with trapped ions. Phys Report, 2008, 4694: 155–203

    Article  MathSciNet  Google Scholar 

  29. Gruska J. Quantum Computing. New York: McGraw-Hill, 1999

    MATH  Google Scholar 

  30. Knill E, Laflamme R. Concatenated Quantum Codes. Technical Report, quant-ph/9608012. 1996

  31. Liang M, Yang L. A note on threshold theorem of fault-tolerant quantum computation. 2010. ArXiv: 1006.4941

  32. Watrous J. Theory of Quantum Information. Waterloo: University of Waterloo Fall, 2011

    MATH  Google Scholar 

  33. Luo X L, Zhu X W, Wu Y, et al. All-quantized Jaynes-Cummings interaction for a trapped ultracold ion. Phys Lett A, 1998, 237: 354–358

    Article  Google Scholar 

  34. Mandel L, Wolf E. Optical Coherence and Quantum Optics. Cambridge: Cambridge University Press, 1995

    Book  Google Scholar 

  35. Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge: Cambridge University Press, 1999

    Book  Google Scholar 

  36. Cohen-Tannoudji C, Dupont-Roc J, Grynberg G. Atom-Photon Interactions. New York: Wiley, 1992

    Google Scholar 

  37. Silberfarb A, Deutsch I H. Continuous measurement with traveling-wave probes. Phys Rev A, 2003, 68: 013817

    Article  Google Scholar 

  38. Sargent M, Scully M O, Lamb W E. Laser Physics. New Jersey: Addison-Wesley, 1974

    Google Scholar 

  39. Wineland D J, Monroe C, Itano W M, et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J Res Natl Inst Stand Technol, 1998, 103: 259

    Article  Google Scholar 

  40. Steane A. The ion trap quantum information processor. Appl Phys B, 1997, 64: 623

    Article  Google Scholar 

  41. Aliferis P, Gottesman D, Preskill J. Accuracy threshold for postselected quantum computation. Qantum Inf Comput, 2008, 83: 181–244

    MathSciNet  MATH  Google Scholar 

  42. Weidt S, Randall J, Webster S C, et al. Trapped-ion quantum logic with global radiation fields. Phys Rev Lett, 2016, 117: 220501

    Article  Google Scholar 

  43. Lekitsch B, Weidt S, Fowler A G, et al. Blueprint for a microwave trapped ion quantum computer. Sci Adv, 2017, 3: e1601540

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61672517), National Cryptography Development Fund (Grant No. MMJJ20170108), National Key R&D Program of China (Grant No. 2016QY03D0503), and Beijing Municipal Science & Technology Commission (Grant No. Z191100007119006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Yang, L. Effect on ion-trap quantum computers from the quantum nature of the driving field. Sci. China Inf. Sci. 63, 202501 (2020). https://doi.org/10.1007/s11432-019-2689-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2689-4

Keywords

Navigation