Skip to main content
Log in

An overview of protected satellite communications in intelligent age

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Protected satellite communications (SatComs) exhibit specific characteristics such as security, intelligence, anti-jamming, and nuclear disaster survivability. They constitute one of the key research topics in modern military communications and have become the basic means for implementing strategic and tactical command and control. Currently, the United States military is using the latest advanced extremely high-frequency (AEHF) system to provide protected communications. Other countries are also employing their own protected SatCom systems to meet future operational requirements. Furthermore, in the modern intelligent age, many intelligent-related technologies are introduced into the protected SatCom systems to provide more secure and efficient communication services. In this paper, a comprehensive overview of the protected SatCom systems is presented. More specifically, a system overview of the protected SatComs is illustrated. Our focus is placed on the critical technologies and practical applications, and finally discuss remaining challenges and look forward to the future research directions. It is undoubted that the protected SatCom is one of the most important systems in military communications, both now and in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeitouni P, Lane D, Trippett M. Protected wideband military satellite communications. In: Proceedings of Space 2004 Conference and Exhibit, 2004. 5849

  2. Shah S M J, Nasir A, Ahmed H. A survey paper on security issues in satellite communication network infrastructure. Int J Eng Res Gen Sci, 2014, 2: 887–900

    Google Scholar 

  3. Tarleton R, Shively S, Armstrong B, et al. Transformational communications architecture for the department of defense, intelligence community and NASA. In: Proceedings of the 24th AIAA International Communications Satellite Systems Conference, 2006. 5424

  4. Daily D I. Next-stage C4ISR bandwidth: the AEHF satellite program. 2012

  5. Forest B D. An Analysis of Military Use of Commercial Satellite Communications. Technical Report, 2008

  6. Fritz D A, Doshi B T, Oak A C, et al. Military satellite communications: space-based communications for the global information grid. Johns Hopkins APL Tech Digest, 2006, 27: 32–40

    Google Scholar 

  7. Jo K Y. Satellite Communications Network Design and Analysis. Boston: Artech House, 2011

    Google Scholar 

  8. Maini A K. Handbook of Defence Electronics and Optronics: Fundamentals, Technologies and Systems. Hoboken: John Wiley & Sons, 2018

    Book  Google Scholar 

  9. Board A F S. Pre-milestone a and early-phase systems engineering: a retrospective review and benefits for future air force systems acquisition. Washington: National Academies Press, 2008

    Google Scholar 

  10. Wang Q, Nguyen T, Pham K, et al. Satellite jamming: a game theoretic analysis. In: Proceedings of IEEE Military Communications Conference (MILCOM), 2017. 141–146

  11. Chapin E H. Scintillation Effects, Mitigations and Recommendations for Afsatcom and Other Satellite Communications Systems. Technical Report, 1981

  12. Adamy D. EW 101: A First Course in Electronic Warfare, Volume 101. Boston: Artech House, 2001

    Google Scholar 

  13. Adamy D. EW 103: Tactical Battlefield Communications Electronic Warfare. Boston: Artech House, 2008

    Google Scholar 

  14. Bash B A, Goeckel D, Towsley D. Covert communication gains from adversary’s ignorance of transmission time. IEEE Trans Wirel Commun, 2016, 15: 8394–8405

    Article  Google Scholar 

  15. Mills R F, Prescott G E. Waveform design and analysis of frequency hopping LPI networks. In: Proceedings Military Communications Conference, 1995. 778–782

  16. Diamant R, Lampe L. Low probability of detection for underwater acoustic communication: a review. IEEE Access, 2018, 6: 19099–19112

    Article  Google Scholar 

  17. Raviprakash G, Tripathi P, Ravi B. Generation of low probability of intercept signals. Int J Sci Eng Technol, 2013, 2: 835–839

    Google Scholar 

  18. Zheng T Y, Chen G, Wang X Y, et al. Real-time intelligent big data processing: technology, platform, and applications. Sci China Inf Sci, 2019, 62: 082101

    Article  Google Scholar 

  19. Hua B, Huang Y, Wu Y H, et al. Spacecraft formation reconfiguration trajectory planning with avoidance constraints using adaptive pigeon-inspired optimization. Sci China Inf Sci, 2019, 62: 070209

    Article  MathSciNet  Google Scholar 

  20. Scholtz R. Notes on spread-spectrum history. IEEE Trans Commun, 1983, 31: 82–84

    Article  Google Scholar 

  21. Simon M K, Omura J K, Scholtz R A, et al. Spread Spectrum Communications, Volume 1. Rockville: Computer Science Press, 1985

    Google Scholar 

  22. Peterson R L, Ziemer R E, Borth D E. Introduction to Spread-Spectrum Communications, Volume 995. Englewood Cliffs: Prentice hall, 1995

    Google Scholar 

  23. Xu W Y. Jamming attack defense. In: Encyclopedia of Cryptography and Security. Berlin: Springer, 2011. 655–661

    Chapter  Google Scholar 

  24. Hasan M, Thakur J M, Podder P. Design and implementation of FHSS and DSSS for secure data transmission. Int J Signal Proc Syst, 2015, 4: 144–149

    Google Scholar 

  25. Rouissi N, Gharsellaoui H, Bouamama S. A hybrid DS-FH-THSS approach anti-jamming in wireless sensor networks. In: Proceedings of the 14th International Conference on Software Engineering Research, Management and Applications (SERA), 2016. 133–139

  26. Berni A, Gregg W. On the utility of chirp modulation for digital signaling. IEEE Trans Commun, 1973, 21: 748–751

    Article  Google Scholar 

  27. Springer A, Gugler W, Huemer M, et al. Spread spectrum communications using chirp signals. In: Proceedings of Information Systems for Enhanced Public Safety and Security, 2000. 166–170

  28. Winter D. Haig’s Command: A Reassessment. Barnsley: Pen and Sword Books, 2004

    Google Scholar 

  29. Galdorisi G, Mroczek A, Volner R. C2 of Next-generation Satellites. Technical Report, 2013

  30. Poisel R. Modern Communications Jamming Principles and Techniques. Boston: Artech House, 2011

    Google Scholar 

  31. Cho S, Goulart A, Akyildiz I F, et al. An adaptive FEC with QOS provisioning for real-time traffic in LEO satellite networks. In: Proceedings of IEEE International Conference on Communications, 2001. 2938–2942

  32. Elias P. Coding for noisy channels. IRE Conv Rec, 1955, 3: 37–46

    Google Scholar 

  33. Viterbi A. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inform Theory, 1967, 13: 260–269

    Article  MATH  Google Scholar 

  34. Bahl L, Cocke J, Jelinek F, et al. Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans Inform Theory, 1974, 20: 284–287

    Article  MathSciNet  MATH  Google Scholar 

  35. Berrou C. Near Shannon limit error-correcting coding and decoding: turbo-codes. In: Proceedings of IEEE International Conference on Communications, 1993

  36. Gallager R. Low-density parity-check codes. IEEE Trans Inform Theory, 1962, 8: 21–28

    Article  MathSciNet  MATH  Google Scholar 

  37. MacKay D J C. Good error-correcting codes based on very sparse matrices. IEEE Trans Inform Theory, 1999, 45: 399–431

    Article  MathSciNet  MATH  Google Scholar 

  38. Arikan E. Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans Inform Theory, 2009, 55: 3051–3073

    Article  MathSciNet  MATH  Google Scholar 

  39. Yi C, Zhang T Q, Hu R, et al. An interleaving approach of enhancing the performance of RS codes in two dimensional space. In: Proceedings of the 5th International Congress on Image and Signal Processing, 2012. 1513–1517

  40. Liu X J, Wei Y J, Jiang M. A universal interleaver design for bit-interleaved QC-LDPC coded modulation. In: Proceedings of the 9th International Conference on Wireless Communications and Signal Processing, 2017

  41. Fonseka J P, Dowling E M, Brown T K, et al. Constrained interleaving of turbo product codes. IEEE Commun Lett, 2012, 16: 13650–1368

    Article  Google Scholar 

  42. Mahdavifar H, El-Khamy M, Lee J, et al. Polar coding for bit-interleaved coded modulation. IEEE Trans Veh Technol, 2016, 65: 3115–3127

    Article  Google Scholar 

  43. Rivest R L, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems. Commun ACM, 1978, 21: 120–126

    Article  MathSciNet  MATH  Google Scholar 

  44. Bhanot R, Hans R. A review and comparative analysis of various encryption algorithms. J Secur Appl, 2015, 9: 289–306

    Google Scholar 

  45. Mahajan P, Sachdeva A. A study of encryption algorithms AES, DES and RSA for security. Global J Comput Sci Technol, 2013, 13: 15

    Google Scholar 

  46. Mandal P C. Evaluation of performance of the symmetric key algorithms: DES, 3DES, AES and blowfish. J Global Res Comput Sci, 2012, 3: 67–70

    Google Scholar 

  47. Gobi M, Sridevi R, Rahini R. A comparative study on the performance and the security of RSA and ECC algorithm. In: Proceedings of Conference on Advanced Networking and Applications, 2015

  48. Creado O M, Wu X, Wang Y, et al. Probabilistic encryption — a comparative analysis against RSA and ECC. In: Proceedings of the 4th International Conference on Computer Sciences and Convergence Information Technology, 2009. 1123–1129

  49. Vanstone S A. Next generation security for wireless: elliptic curve cryptography. Comput Secur, 2003, 22: 412–415

    Article  Google Scholar 

  50. Bensikaddour E H, Bentoutou Y, Taleb N. Satellite image encryption method based on AES-CTR algorithm and geffe generator. In: Proceedings of the 8th International Conference on Recent Advances in Space Technologies, 2017. 247–252

  51. Bentoutou Y, Bensikaddour E H, Taleb N, et al. An improved image encryption algorithm for satellite applications. Adv Space Res, 2020, 66: 176–192

    Article  Google Scholar 

  52. Jeon S, Choi J P. CFB-AES-turbo: joint encryption and channel coding for secure satellite data transmission. In: Proceedings of IEEE International Conference on Communications, 2019

  53. Pirzada S J H, Murtaza A, Jianwei L, et al. The parallel cmac authenticated encryption algorithm for satellite communication. In: Proceedings of the 9th International Conference on Electronics Information and Emergency Communication, 2019

  54. Sheriff R E, Hu Y F. Mobile Satellite Communication Networks. Hoboken: John Wiley & Sons, 2003

    Google Scholar 

  55. Brand J C. Protected transitional solution to transformational satellite communications. In: Proceedings of Digital Wireless Communications VII and Space Communication Technologies, 2005. 366–373

  56. Du C H, Zhang Z S, Wang X X, et al. Optimal duplex mode selection for D2D-aided underlaying cellular networks. IEEE Trans Veh Technol, 2020, 69: 3119–3134

    Article  Google Scholar 

  57. Haykin S. Adaptive Filter Theory. Delhi: Pearson Education India, 2005

    MATH  Google Scholar 

  58. Dixit S, Nagaria D. LMS adaptive filters for noise cancellation: a review. Int J Electr Comput Eng, 2017, 7: 2520

    Google Scholar 

  59. Zakharov Y V, White G P, Liu J. Low-complexity RLS algorithms using dichotomous coordinate descent iterations. IEEE Trans Signal Process, 2008, 56: 3150–3161

    Article  MathSciNet  MATH  Google Scholar 

  60. Montazeri M, Duhamel P. A set of algorithms linking NLMS and block RLS algorithms. IEEE Trans Signal Process, 1995, 43: 444–453

    Article  Google Scholar 

  61. Slock D T M. On the convergence behavior of the LMS and the normalized LMS algorithms. IEEE Trans Signal Process, 1993, 41: 2811–2825

    Article  MATH  Google Scholar 

  62. Lee J C, Un C K. Performance analysis of frequency-domain block LMS adaptive digital filters. IEEE Trans Circ Syst, 1989, 36: 173–189

    Article  MathSciNet  Google Scholar 

  63. Yuan J T, Lee J N. Narrow-band interference rejection in DS/CDMA systems using adaptive (QRD-LSL)-based nonlinear ACM interpolators. IEEE Trans Veh Technol, 2003, 52: 374–379

    Article  Google Scholar 

  64. Vijayan R, Poor H V. Nonlinear techniques for interference suppression in spread-spectrum systems. IEEE Trans Commun, 1990, 38: 1060–1065

    Article  Google Scholar 

  65. Li H B, Tian H L. A new VSS-LMS adaptive filtering algorithm and its application in adaptive noise jamming cancellation system. In: Proceedings of IEEE Circuits and Systems International Conference on Testing and Diagnosis, 2009

  66. Dilli O, Koyuncu M, Akçam N, et al. Secure communication tests carried out with next generation narrow band terminal in satellite and local area networks. In: Proceedings of the 6th International Conference on Recent Advances in Space Technologies, 2013. 493–498

  67. Morlet C, Lan N, La Barbera S. Satellite communication requirements for 4D air traffic management. In: Proceedings of Integrated Communications, Navigation and Surveillance Conference, 2013

  68. Liu G, Ji H, Li Y, et al. TCP performance enhancement for mobile broadband interactive satellite communication system: a cross-layer approach. In: Proceedings of the 8th International Conference on Communications and Networking in China, 2013. 822–827

  69. Yu X Y, Yang Y, Ding J J. Satellite network design method applicable to orbit determination and communication for GNSS. In: Proceedings of the 4th International Conference on Software Engineering and Service Science, 2013. 886–889

  70. Sharma S K, Chatzinotas S, Ottersten B. Satellite cognitive communications: interference modeling and techniques selection. In: Proceedings of the 6th Advanced Satellite Multimedia Systems Conference and the 12th Signal Processing for Space Communications Workshop, 2012. 111–118

  71. Clare L, Clement B, Gao J, et al. Space-based networking technology developments in the interplanetary network directorate information technology program. In: Proceedings of the 2nd IEEE International Conference on Space Mission Challenges for Information Technology, 2006

  72. Tasca D M, Peden J C. Emp Surge Suppression Connectors Utilizing Metal Oxide Varistors. Technical Report, 1974

  73. Wang X Y, Zhang Z S, Long K P. Secure beamforming for multiple-antenna amplify-and-forward relay networks. IEEE Trans Signal Process, 2016, 64: 1477–1492

    Article  MathSciNet  MATH  Google Scholar 

  74. Rong B N, Zhang Z S, Zhao X, et al. Robust superimposed training designs for MIMO relaying systems under general power constraints. IEEE Access, 2019, 7: 80404–80420

    Article  Google Scholar 

  75. Qian J H, He Z S, Xie J L, et al. Null broadening adaptive beamforming based on covariance matrix reconstruction and similarity constraint. Eurasip J Adv Signal Process, 2017, 2017: 1

    Article  Google Scholar 

  76. Luo S X, Zhang Z S, Wang S, et al. Network for hypersonic UCAV swarms. Sci China Inf Sci, 2020, 63: 140311

    Article  Google Scholar 

  77. Kim J G, Park W S. Sectoral conical beam former for a 2 × 2 array antenna. Antennas Wirel Propag Lett, 2009, 8: 712–715

    Article  Google Scholar 

  78. Moulder W F, Khalil W, Volakis J L. 60-GHz two-dimensionally scanning array employing wideband planar switched beam network. Antennas Wirel Propag Lett, 2010, 9: 818–821

    Article  Google Scholar 

  79. Stewart R G, Hampel D. EMP hardened CMOS circuits. IEEE Trans Nucl Sci, 1974, 21: 332–339

    Article  Google Scholar 

  80. Rudie N J. Principles and Techniques of Radiation Hardening. North Hollywood: Western Periodicals Company, 1986

    Google Scholar 

  81. Miller C R. Electromagnetic Pulse Threats in 2010. Technical Report, 2005

  82. Tront J. Predicting URF upset of MOSFET digital IC’s. IEEE Trans Electromagn Compat, 1985, 27: 64–69

    Article  Google Scholar 

  83. Laurin J, Zaky S G, Balmain K G. On the prediction of digital circuit susceptibility to radiated EMI. IEEE Trans Electromagn Compat, 1995, 37: 528–535

    Article  Google Scholar 

  84. David Yang H Y, Kollman R. Analysis of high-power RF interference on digital circuits. Electromagnetics, 2006, 26: 87–102

    Article  Google Scholar 

  85. Zhang Z S, Long K P, Wang J P, et al. On swarm intelligence inspired self-organized networking: its bionic mechanisms, designing principles and optimization approaches. IEEE Commun Surv Tut, 2014, 16: 513–537

    Article  Google Scholar 

  86. Hu Y, Wang J, Liang J, et al. A self-organizing multimodal multi-objective pigeon-inspired optimization algorithm. Sci China Inf Sci, 2019, 62: 070206

    Article  MathSciNet  Google Scholar 

  87. Baltrusaitis T, Ahuja C, Morency L P. Multimodal machine learning: a survey and taxonomy. IEEE Trans Pattern Anal Mach Intell, 2019, 41: 423–443

    Article  Google Scholar 

  88. Ngiam J, Khosla A, Kim M, et al. Multimodal deep learning. In: Proceedings of the 28th International Conference on Machine Learning, 2011. 689–696

  89. Wang D X, Cui P, Ou M D, et al. Deep multimodal hashing with orthogonal regularization. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence, 2015

  90. Jia X, Gavves E, Fernando B, et al. Guiding the long-short term memory model for image caption generation. In: Proceedings of IEEE International Conference on Computer Vision, 2015. 2407–2415

  91. Brown P F, Pietra V J D, Pietra S A D, et al. The mathematics of statistical machine translation: parameter estimation. Comput Linguist, 1993, 19: 263–311

    Google Scholar 

  92. Yuhas B P, Goldstein M H, Sejnowski T J. Integration of acoustic and visual speech signals using neural networks. IEEE Commun Mag, 1989, 27: 65–71

    Article  Google Scholar 

  93. Lan Z Z, Bao L, Yu S I, et al. Multimedia classification and event detection using double fusion. Multimed Tools Appl, 2014, 71: 333–347

    Article  Google Scholar 

  94. Khan A, Aftab F, Zhang Z. BICSF: bio-inspired clustering scheme for FANETs. IEEE Access, 2019, 7: 31446–31456

    Article  Google Scholar 

  95. Grossberg S. Nonlinear neural networks: principles, mechanisms, and architectures. Neural Netw, 1988, 1: 17–61

    Article  Google Scholar 

  96. Holland J H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. Cambridge: MIT Press, 1992

    Book  Google Scholar 

  97. Darwin C. On the Origin of Species. London: John Murray, 1859

    Google Scholar 

  98. Aytug H, Khouja M, Vergara F E. Use of genetic algorithms to solve production and operations management problems: a review. Int J Production Res, 2003, 41: 3955–4009

    Article  Google Scholar 

  99. Dimopoulos C, Zalzala A M S. Recent developments in evolutionary computation for manufacturing optimization: problems, solutions, and comparisons. IEEE Trans Evol Comput, 2000, 4: 93–113

    Article  Google Scholar 

  100. Goldberg D E. Genetic Algorithms. Delhi: Pearson Education India, 2006

    Google Scholar 

  101. Reeves T C, Hedberg J G. Interactive Learning Systems Evaluation. Englewood Cliffs: Educational Technology, 2003

    Google Scholar 

  102. Dorigo M, Birattari M. Ant Colony Optimization. Berlin: Springer, 2010

    Google Scholar 

  103. Gandomi A H, Yang X S, Alavi A H. Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput, 2013, 29: 17–35

    Article  Google Scholar 

  104. Gandomi A H, Yang X S, Alavi A H. Mixed variable structural optimization using firefly algorithm. Comput Struct, 2011, 89: 2325–2336

    Article  Google Scholar 

  105. Yang X S, He X. Bat algorithm: literature review and applications. Int J Bio-Inspir Comput, 2013, 5: 141–149

    Article  Google Scholar 

  106. Bains A S. An overview of millimeter wave communications for military applications. Defence Sci J, 1993, 43: 27–36

    Article  Google Scholar 

  107. Alley R B, Brigham-Grette J, Miller G H, et al. Past Climate Variability and Change in the Arctic and at High Latitudes. Technical Report, 2009

  108. Cheffena M. High-capacity radio communication for the polar region: challenges and potential solutions [wireless corner]. IEEE Antennas Propag Mag, 2012, 54: 238–244

    Article  Google Scholar 

  109. Kvamstad B, Fjortoft K, Bekkadal F, et al. A case study from an emergency operation in the arctic seas. Int J Marine Navigation Safety Sea Transp, 2009, 3: 153–159

    Google Scholar 

  110. Klaes K D, Cohen M, Buhler Y, et al. An introduction to the EUMETSAT polar system. Bull Am Meteorol Soc, 2007, 88: 1085–1096

    Article  Google Scholar 

  111. Kato M. Nuclear globalism: traversing rockets, satellites, and nuclear war via the strategic gaze. Alternatives, 1993, 18: 339–360

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. U1836201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongshan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhang, Z., Wu, J. et al. An overview of protected satellite communications in intelligent age. Sci. China Inf. Sci. 64, 161301 (2021). https://doi.org/10.1007/s11432-019-2928-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2928-9

Keywords

Navigation