Skip to main content
Log in

Mean square stability for Markov jump Boolean networks

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, one of the stability definitions of Markov jump Boolean networks (MJBNs), called mean square stability (MSS), is investigated. Some necessary and sufficient conditions are presented to guarantee the MSS of such MJBNs. Moreover, one of the necessary and sufficient conditions for MSS is obtained in terms of linear programming, which implies that MSS is equivalent to global stability with probability 1 for MJBNs. Furthermore, the construction of Lyapunov function is given and also another theorem based on the Lyapunov function is derived to ensure the MSS of MJBNs. Finally, a numerical example is provided to illustrate the profits of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 1969, 22: 437–467

    Article  MathSciNet  Google Scholar 

  2. Cheng D, Qi H, Li Z. Analysis and Control of Boolean Networks: a Semi-tensor Product Approach. London: Springer, 2010

    Google Scholar 

  3. Hochma G, Margaliot M, Fornasini E, et al. Symbolic dynamics of Boolean control networks. Automatica, 2013, 49: 2525–2530

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang S, Feng J-E, Yu Y Y, et al. Further results on dynamic-algebraic Boolean control networks. Sci China Inf Sci, 2019, 62: 012208

    Article  MathSciNet  Google Scholar 

  5. Li F F, Sun J T. Controllability of Boolean control networks with time delays in states. Automatica, 2011, 47: 603–607

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhong J, Lu J Q, Huang T W, et al. Controllability and synchronization analysis of identical-hierarchy mixed-valued logical control networks. IEEE Trans Cybern, 2017, 47: 3482–3493

    Article  Google Scholar 

  7. Li H T, Wang Y Z. On reachability and controllability of switched Boolean control networks. Automatica, 2012, 48: 2917–2922

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhu Q X, Liu Y, Lu J Q, et al. Observability of Boolean control networks. Sci China Inf Sci, 2018, 61: 092201

    Article  MathSciNet  Google Scholar 

  9. Fornasini E, Valcher M E. Observability, reconstructibility and state observers of boolean control networks. IEEE Trans Automat Contr, 2013, 58: 1390–1401

    Article  MathSciNet  MATH  Google Scholar 

  10. Li R, Yang M, Chu T G. State feedback stabilization for probabilistic Boolean networks. Automatica, 2014, 50: 1272–1278

    Article  MathSciNet  MATH  Google Scholar 

  11. Lu J Q, Li M L, Liu Y, et al. Nonsingularity of Grain-like cascade FSRs via semi-tensor product. Sci China Inf Sci, 2018, 61: 010204

    Article  MathSciNet  Google Scholar 

  12. Liu R J, Lu J Q, Liu Y, et al. Delayed feedback control for stabilization of Boolean control networks with state delay. IEEE Trans Neural Netw Learn Syst, 2018, 29: 3283–3288

    MathSciNet  Google Scholar 

  13. Li H, Wang Y, Xie L, et al. Disturbance decoupling control design for switched Boolean control networks. Syst Control Lett, 2014, 72: 1–6

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu Y, Tong L Y, Lou J G, et al. Sampled-data control for the synchronization of boolean control networks. IEEE Trans Cybern, 2019, 49: 726–732

    Article  Google Scholar 

  15. Li F F. Pinning control design for the stabilization of Boolean networks. IEEE Trans Neural Netw Learn Syst, 2016, 27: 1585–1590

    Article  MathSciNet  Google Scholar 

  16. Zhu S Y, Liu Y, Lou Y J, et al. Stabilization of logical control networks: an event-triggered control approach. Sci China Inf Sci, 2020, 63: 112203

    Article  MathSciNet  Google Scholar 

  17. Yang M, Chu T G. Evaluation of attractors and basins of asynchronous random Boolean networks. Phys Rev E, 2012, 85: 056105

    Article  Google Scholar 

  18. Shmulevich I, Dougherty E R, Kim S, et al. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 2002, 18: 261–274

    Article  Google Scholar 

  19. Shmulevich I, Dougherty E R, Zhang W. From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proc IEEE, 2002, 90: 1778–1792

    Article  Google Scholar 

  20. Meng M, Liu L, Feng G. Stability and l1 gain analysis of Boolean networks with Markovian jump parameters. IEEE Trans Automat Contr, 2017, 62: 4222–4228

    Article  MATH  Google Scholar 

  21. Liu Y, Chen H W, Lu J Q, et al. Controllability of probabilistic Boolean control networks based on transition probability matrices. Automatica, 2015, 52: 340–345

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo Y Q, Zhou R P, Wu Y H, et al. Stability and set stability in distribution of probabilistic Boolean networks. IEEE Trans Automat Contr, 2019, 64: 736–742

    MathSciNet  MATH  Google Scholar 

  23. Liu Y, Wang L Q, Lu J Q, et al. Sampled-data stabilization of probabilistic Boolean control networks. Syst Control Lett, 2019, 124: 106–111

    Article  MathSciNet  MATH  Google Scholar 

  24. Wu Y H, Shen T L. An algebraic expression of finite horizon optimal control algorithm for stochastic logical dynamical systems. Syst Control Lett, 2015, 82: 108–114

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu Y H, Shen T L. A finite convergence criterion for the discounted optimal control of stochastic logical networks. IEEE Trans Automat Contr, 2018, 63: 262–268

    Article  MathSciNet  MATH  Google Scholar 

  26. Possieri C, Teel A R. Asymptotic stability in probability for stochastic Boolean networks. Automatica, 2017, 83: 1–9

    Article  MathSciNet  MATH  Google Scholar 

  27. Kim S, Li H, Dougherty E R, et al. Can Markov chain models mimic biological regulation? J Biol Syst, 2002, 10: 337–357

    Article  MATH  Google Scholar 

  28. Sun Y H, Feng G, Cao J D. Stochastic stability of Markovian switching genetic regulatory networks. Phys Lett A, 2009, 373: 1646–1652

    Article  MathSciNet  MATH  Google Scholar 

  29. Costa O, Fragoso M, Marques R. Discrete-time Markov Jump Linear Systems. London: Springer, 2005

    Book  MATH  Google Scholar 

  30. Li H T, Wang Y Z. Lyapunov-based stability and construction of Lyapunov functions for Boolean networks. SIAM J Control Opt, 2017, 55: 3437–3457

    Article  MathSciNet  MATH  Google Scholar 

  31. Lian J, Liu J, Zhuang Y. Mean stability of positive Markov jump linear systems with homogeneous and switching transition probabilities. IEEE Trans Circ Syst II, 2015, 62: 801–805

    Google Scholar 

  32. Kobayashi K, Hiraishi K. An integer programming approach to optimal control problems in context-sensitive probabilistic Boolean networks. Automatica, 2011, 47: 1260–1264

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Fang, M. & Wu, ZG. Mean square stability for Markov jump Boolean networks. Sci. China Inf. Sci. 63, 112205 (2020). https://doi.org/10.1007/s11432-019-9934-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-9934-5

Keywords

Navigation