Skip to main content
Log in

Demonstration of a distributed feedback laser diode working as a graded-potential-signaling photonic neuron and its application to neuromorphic information processing

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

We find that a commonly-used distributed feedback laser diode (DFB-LD) can work as a graded-potential-signaling photonic neuron. Through theoretical and experimental demonstration, DFB-LDs are proved useful for three graded-potential-signaling-based neuromorphic processing applications of the pattern recognition, the single-wavelength implementation of spike timing dependent plasticity (STDP), and the sound azimuth measurement. The pattern recognition with a full-width-at-half-maximum (FWHM) of 1 μs is realized in the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peng H T, Nahmias M A, de Lima T F, et al. Neuromorphic photonic integrated circuits. IEEE J Sel Top Quantum Electron, 2018, 24: 1–15

    Article  Google Scholar 

  2. Prucnal P R, Shastri B J. Neuromorphic Photonics. Boca Raton: CRC Press, 2017

    Book  Google Scholar 

  3. Rajamani V, Kim H, Chua L. Morris-Lecar model of third-order barnacle muscle fiber is made of volatile memristors. Sci China Inf Sci, 2018, 61: 060426

    Article  MathSciNet  Google Scholar 

  4. Yang C J, Adhikari S P, Kim H S. Excitatory and inhibitory actions of a memristor bridge synapse. Sci China Inf Sci, 2018, 61: 060427

    Article  Google Scholar 

  5. Li Y, Zhou Y X, Wang Z R, et al. Memcomputing: fusion of memory and computing. Sci China Inf Sci, 2018, 61: 060424

    Article  Google Scholar 

  6. Prucnal P R, Shastri B J, de Lima T F, et al. Recent progress in semiconductor excitable lasers for photonic spike processing. Adv Opt Photon, 2016, 8: 228–299

    Article  Google Scholar 

  7. Robertson J, Wade E, Hurtado A. Electrically controlled neuron-like spiking regimes in vertical-cavity surface-emitting lasers at ultrafast rates. IEEE J Sel Top Quantum Electron, 2019, 25: 1–7

    Article  Google Scholar 

  8. Jiang P, Chen C, Liu X B, et al. Generation and characterization of spiking and nonspiking oligodendroglial progenitor cells from embryonic stem cells. Stem Cells, 2013, 31: 2620–2631

    Article  Google Scholar 

  9. Eyal G, Verhoog M B, Testa-Silva G, et al. Human cortical pyramidal neurons: from spines to spikes via models. Front Cell Neurosci, 2018, 12: 181

    Article  Google Scholar 

  10. DiCaprio R A. Information transfer rate of nonspiking afferent neurons in the crab. J Neurophysiol, 2004, 92: 302–310

    Article  Google Scholar 

  11. Li Z, Liu J, Zheng M, et al. Encoding of both analog- and digital-like behavioral outputs by one C. elegans interneuron. Cell, 2014, 159: 751–765

    Article  Google Scholar 

  12. Xiang S Y, Zhang Y H, Gong J K, et al. STDP-based unsupervised spike pattern learning in a photonic spiking neural network with VCSELs and VCSOAs. IEEE J Sel Top Quant, 2019, 25: 1700109

    Article  Google Scholar 

  13. Ren Q S, Zhang Y L, Wang R, et al. Optical spike-timing-dependent plasticity with weight-dependent learning window and reward modulation. Opt Express, 2015, 23: 25247–25258

    Article  Google Scholar 

  14. Toole R, Tait A N, de Lima T F, et al. Photonic implementation of spike-timing-dependent plasticity and learning algorithms of biological neural systems. J Lightw Technol, 2016, 34: 470–476

    Article  Google Scholar 

  15. Fok M P, Tian Y, Rosenbluth D, et al. Pulse lead/lag timing detection for adaptive feedback and control based on optical spike-timing-dependent plasticity. Opt Lett 2013, 38: 419–421

    Article  Google Scholar 

  16. Zhang J, Gao C X, Xue M Y, et al. Research on frequency modulation character of the current driven DFB semicon-ductor laser. Mod Phys Lett 2019, 33: 1850422

    Article  Google Scholar 

  17. Liu Q, Hollopeter G, Jorgensen E M. Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction. Proc Natl Acad Sci USA 2009, 106: 10823–10828

    Article  Google Scholar 

  18. Selmi F, Braive R, Beaudoin G, et al. Temporal summation in a neuromimetic micropillar laser., Opt Lett 2015, 40: 5690–5693

    Article  Google Scholar 

  19. Zucker R S, Regehr W G. Short-term synaptic plasticity., Annu Rev Physiol, 2002, 64: 355–405

    Article  Google Scholar 

  20. Hu J, Tang H J, Tan K C, et al. How the brain formulates memory: a spatio-temporal model research frontier. IEEE Comput Intell Mag, 2016, 11: 56–68

    Article  Google Scholar 

  21. Wang W, Pedretti G, Milo V, et al. Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses., Sci Adv, 2018, 4: eaat4752

    Article  Google Scholar 

  22. Froemke R C, Dan Y. Spike-timing-dependent synaptic modification induced by natural spike trains. 2002, Nature, 416: 433–438

    Article  Google Scholar 

  23. He Y L, Nie S, Liu R, et al. Spatiotemporal information processing emulated by multiterminal neuro-transistor networks. Adv Mater, 2019, 31: 1900903

    Article  Google Scholar 

  24. Song Z W, Xiang S Y, Ren Z X, et al. Photonic spiking neural network based on excitable VCSELs-SA for sound azimuth detection., Opt Express, 2020, 28: 1561–1573

    Article  Google Scholar 

  25. Ma B W, Chen J P, Zou W W. A DFB-LD-based photonic neuromorphic network for spatiotemporal pattern recognition. In: Proceedings of Optical Fiber Communication Conference, San Diego, 2020. M2K.2

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant No. 2019YFB2203700) and National Natural Science Foundation of China (Grant No. 61822508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwen Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Zou, W. Demonstration of a distributed feedback laser diode working as a graded-potential-signaling photonic neuron and its application to neuromorphic information processing. Sci. China Inf. Sci. 63, 160408 (2020). https://doi.org/10.1007/s11432-020-2887-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-2887-6

Keywords

Navigation