Skip to main content
Log in

Superconducting X-ray detectors

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Owing to their high sensitivity and low noise, superconducting detectors are used for photon detection from microwave to high-energy particles. X-ray detection plays an important role in materials analysis, astronomy, and medical radiography, which require high efficiency as well as high energy resolution. However, traditional semiconducting detectors cannot fulfill these requirements. In this article, we review superconducting quantum detectors for X-ray detection, including transition-edge sensor (TES), superconducting tunneling junctions (STJs), kinetic inductance detectors (KIDs) and superconducting nanowire single-photon detectors (SNSPDs), and introduce the physical structures, working mechanisms, and device behaviors of these detectors. We also review their performances regarding X-ray detection and analyze their respective characteristics. According to recent progress and the requirements of various applications, possible improvement of superconducting detectors for X-rays are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hasegawa B H. The Physics of Medical X-ray Imaging, Or, the Photon and Me-How I Saw the Light. 2nd ed. Madison: Medical Physics, 1991

    Google Scholar 

  2. Jenkins R, Snyder R L. Introduction to X-ray Powder Diffractometry. New York: Wiley, 1996

    Book  Google Scholar 

  3. Wang Q, Chen Z, Wu X, et al. Review of X-ray security inspection technology. Compu Tomograph Theory Appl, 2004, 1: 8

    Google Scholar 

  4. Fraser G. X-ray Detectors in Astronomy. Cambridge and New York: Cambridge University Press, 1989. 312

    Book  Google Scholar 

  5. Cnudde V, Boone M N. High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth-Sci Rev, 2013, 123: 1–17

    Article  Google Scholar 

  6. Jenkins R. X-ray Fluorescence Spectrometry. New York: Wiley, 1999

    Book  Google Scholar 

  7. Gatti E, Rehak P. Semiconductor drift chamber - an application of a novel charge transport scheme. Nucl Instruments Methods Phys Res, 1984, 225: 608–614

    Article  Google Scholar 

  8. Lechner P, Fiorini C, Hartmann R, et al. Silicon drift detectors for high count rate X-ray spectroscopy at room temperature. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2001, 458: 281–287

    Article  Google Scholar 

  9. Lechner P, Eckbauer S, Hartmann R, et al. Silicon drift detectors for high resolution room temperature X-ray spectroscopy. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 1996, 377: 346–351

    Article  Google Scholar 

  10. Yakunin S, Sytnyk M, Kriegner D, et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat Photon, 2015, 9: 444–449

    Article  Google Scholar 

  11. Tinkham M. Introduction to Superconductivity. 2nd ed. New York: McGraw-Hill, 1996

    Google Scholar 

  12. Schrieffer J R. Theory of Superconductivity. Boca Raton: CRC Press, 2018

    Book  MATH  Google Scholar 

  13. Matthias B T, Geballe T H, Compton V B. Superconductivity. Rev Modern Phys, 1963, 35: 1

    Article  Google Scholar 

  14. Anlage S M. The physics and applications of superconducting metamaterials. J Opt, 2010, 13: 024001

    Article  Google Scholar 

  15. Tomita M, Murakami M. High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29K. Nature, 2003, 421: 517–520

    Article  Google Scholar 

  16. Braunisch W, Knauf N, Kataev V, et al. Paramagnetic Meissner effect in Bi high-temperature superconductors. Phys Rev Lett, 1992, 68: 1908

    Article  Google Scholar 

  17. Orlando T P, Delin K A. Foundations of Applied Superconductivity. Reading: Addison-Wesley, 1991

    Book  Google Scholar 

  18. Semenov A, Engel A, Ilin K, et al. Ultimate performance of a superconducting quantum detector. Eur Phys J Appl Phy, 2003, 21: 171–178

    Article  Google Scholar 

  19. Bardeen J, Cooper L N, Schrieffer J R. Theory of superconductivity. Phys Rev, 1957, 108: 1175–1204

    Article  MathSciNet  MATH  Google Scholar 

  20. Irwin K D, Hilton G C. Transition-edge sensors. In: Cryogenic Particle Detection. Berlin: Springer, 2005. 63–150

    Chapter  Google Scholar 

  21. Aschermann G, Friederich E, Justi E, et al. Supraleitfähige Verbindungen mit extrem hohen Sprungtemperaturen (NbH und NbN). In: Technischwissenschaftliche Abhandlungen der Osram-Gesellschaft. Berlin: Springer, 1943. 401–416

    Chapter  Google Scholar 

  22. Andrews D, Brucksch J W, Ziegler W, et al. Superconducting films as radiometric receivers. Phys Rev, 1941, 59: 1045

    Article  Google Scholar 

  23. Pippard A. Field variation of the superconducting penetration depth. Proc Royal Society London Ser A Math Phys Sci, 1950, 203: 210–223

    Google Scholar 

  24. Suhl H, Matthias B T, Walker L R. Bardeen-Cooper-Schrieffer theory of superconductivity in the case of overlapping bands. Phys Rev Lett, 1959, 3: 552–554

    Article  MATH  Google Scholar 

  25. Gor’kov L P. Microscopic derivation of the Ginzburg-Landau equations in the theory of superconductivity. Sov Phys JETP, 1959, 9: 1364–1367

    MATH  Google Scholar 

  26. Ginzburg V, Landau L. Zh. Eksper. Teor. Fiz. Oxford: Pergamon Press, 1950, 20: 1064–1082

    Google Scholar 

  27. Day P K, LeDuc H G, Mazin B A, et al. A broadband superconducting detector suitable for use in large arrays. Nature, 2003, 425: 817–821

    Article  Google Scholar 

  28. Zmuidzinas J. Superconducting microresonators: physics and applications. Annu Rev Condens Matter Phys, 2012, 3: 169–214

    Article  Google Scholar 

  29. Samedov V V. Influence of the proximity effect on the energy resolution of STJs. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2004, 520: 257–259

    Article  Google Scholar 

  30. Wang Z, Kawakami A, Uzawa Y. NbN/AlN/NbN tunnel junctions with high current density up to 54 kA/cm2. Appl Phys Lett, 1997, 70: 114–116

    Article  Google Scholar 

  31. Mazin B A, Bumble B, Meeker S R, et al. A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics. Opt Express, 2012, 20: 1503–1511

    Article  Google Scholar 

  32. Wollman D A, Irwin K D, Hilton G C, et al. High-resolution, energy-dispersive microcalorimeter spectrometer for X-ray microanalysis. J Microsc, 1997, 188: 196–223

    Article  Google Scholar 

  33. Irwin K D, Hilton G C, Wollman D A, et al. X-ray detection using a superconducting transition-edge sensor microcalorimeter with electrothermal feedback. Applied Phys Lett, 1996, 69: 1945–1947

    Article  Google Scholar 

  34. Kurakado M. Review on superconducting tunnel junctions as ionizing-radiation detectors. In: Superconducting Devices and Their Applications. Berlin: Springer, 1992. 466–473

    Chapter  Google Scholar 

  35. Mazin B A. Microwave kinetic inductance detectors. Dissertation for Ph.D. Degree. California: California Institute of Technology, 2005

    Google Scholar 

  36. Gol’tsman G N, Okunev O, Chulkova G, et al. Picosecond superconducting single-photon optical detector. Appl Phys Lett, 2001, 79: 705–707

    Article  Google Scholar 

  37. Irwin K D, Niemack M D, Beyer J, et al. Code-division multiplexing of superconducting transition-edge sensor arrays. Supercond Sci Technol, 2010, 23: 034004

    Article  Google Scholar 

  38. Irimatsugawa T, Hatakeyama S, Ohno M, et al. High energy gamma-ray spectroscopy using transition-edge sensor with a superconducting bulk tantalum absorber. IEEE Trans Appl Superconduct, 2014, 25: 1–3

    Article  Google Scholar 

  39. Ullom J N, Bennett D A. Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy. Supercond Sci Technol, 2015, 28: 084003

    Article  Google Scholar 

  40. Friedrich S, Harris J, Warburton W K, et al. 112-pixel arrays of high-efficiency STJ X-ray detectors. J Low Temp Phys, 2014, 176: 553–559

    Article  Google Scholar 

  41. Andrianov V. Comment on “Observation of nuclear gamma resonance with superconducting tunnel junction detectors” [AIP Advances 6, 025315 (2016)]. AIP Adv, 2019, 9: 059101

    Article  Google Scholar 

  42. Ulbricht G, Mazin B A, Szypryt P, et al. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy. Appl Phys Lett, 2015, 106: 251103

    Article  Google Scholar 

  43. Faverzani M, Cruciani A, D’Addabbo A, et al. Thermal kinetic inductance detectors for soft X-ray spectroscopy. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2019, 936: 197–198

    Article  Google Scholar 

  44. Zhang X, Wang Q, Schilling A. Superconducting single X-ray photon detector based on W0.8Si0.2. AIP Adv, 2016, 6: 115104

    Article  Google Scholar 

  45. Inderbitzin K, Engel A, Schilling A, et al. An ultra-fast superconducting Nb nanowire single-photon detector for soft X-rays. Appl Phys Lett, 2012, 101: 162601

    Article  Google Scholar 

  46. Mates J A B. The microwave SQUID multiplexer. Dissertation for Ph.D. Degree. Colorado: University of Colorado, 2011

    Google Scholar 

  47. Chester G V, Thellung A. The law of Wiedemann and Franz. Proc Phys Soc, 1961, 77: 1005–1013

    Article  MathSciNet  MATH  Google Scholar 

  48. Lindeman M A, Bandler S, Brekosky R P, et al. Impedance measurements and modeling of a transition-edge-sensor calorimeter. Rev Sci Instruments, 2004, 75: 1283–1289

    Article  Google Scholar 

  49. Lindeman M A. Microcalorimetry and the transition-edge sensor. Dissertation for Ph.D. Degree. Livermore: Lawrence Livermore National Lab., 2000

    Book  Google Scholar 

  50. Irwin K D. Phonon-mediated particle detection using superconducting tungsten transition-edge sensors. Dissertation for Ph.D. Degree. Batavia: Fermi National Accelerator Lab., 1995

    Book  Google Scholar 

  51. Irwin K D, Hilton G C, Wollman D A, et al. Thermal-response time of superconducting transition-edge microcalorimeters. J Appl Phys, 1998, 83: 3978–3985

    Article  Google Scholar 

  52. Mandl F. Statistical Physics. 2nd ed. Trowbridge: John Wiley & Sons, 1988

    Google Scholar 

  53. Giachero A, Cruciani A, D’Addabbo A, et al. Development of thermal kinetic inductance detectors suitable for X-ray spectroscopy. J Low Temp Phys, 2018, 193: 163–169

    Article  Google Scholar 

  54. Mazin B A, Bumble B, Day P K, et al. Position sensitive X-ray spectrophotometer using microwave kinetic inductance detectors. Appl Phys Lett, 2006, 89: 222507

    Article  Google Scholar 

  55. Verhoeve P, Martin D, Venn R. Imaging soft X-ray spectrometers based on superconducting tunnel junctions. In: Proceedings of SPIE, 2010. 7742

  56. Semenov A D, Gol tsman G N, Sobolewski R. Hot-electron effect in superconductors and its applications for radiation sensors. Supercond Sci Technol, 2002, 15: R1–R16

    Article  Google Scholar 

  57. Koch H, Lübbig H. Superconducting devices and their applications: In: Proceedings of the 4th International Conference SQUID’91 (Sessions on Superconducting Devices), Berlin, 1991

  58. Hays-Wehle J P, Lowell P J, Schmidt D R, et al. An overhanging absorber for TES X-ray focal planes. IEEE Trans Appl Superconduct, 2017, 27: 1–4

    Article  Google Scholar 

  59. Lee S J, Adams J S, Bandler S R, et al. Fine pitch transition-edge sensor X-ray microcalorimeters with sub-eV energy resolution at 1.5 keV. Appl Phys Lett, 2015, 107: 223503

    Article  Google Scholar 

  60. Gaidis M. Superconducting tunnel junctions as single photon X-ray detectors. Dissertation for Ph.D. Degree. New Haven: Yale University, 1994

    Google Scholar 

  61. Sellers G J, Anderson A C, Birnbaum H K. Anomalous heat capacities of niobium and tantalum below 1 K. Phys Rev B, 1974, 10: 2771–2776

    Article  Google Scholar 

  62. O’Neal H R, Phillips N E. Low-temperature heat capacities of indium and tin. Phys Rev, 1965, 137: A748–A759

    Article  Google Scholar 

  63. Smith S J, Adams J S, Bandler S R, et al. Multiabsorber transition-edge sensors for x-ray astronomy. J Astron Telesc Instrum Syst, 2019, 5: 021008

    Article  Google Scholar 

  64. Maul M K, Strandberg M W P, Kyhl R L. Excess noise in superconducting bolometers. Phys Rev, 1969, 182: 522–525

    Article  Google Scholar 

  65. Neuhauser B, Cabrera B, Martoff C J, et al. Phonon-mediated detection of Alpha particles with aluminum transition edge sensors. Jpn J Appl Phys, 1987, 26: 1671

    Article  Google Scholar 

  66. Clarke J, Braginski A I. The SQUID Handbook. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2004

    Book  Google Scholar 

  67. Irwin K D, Nam S W, Cabrera B, et al. A self-biasing cryogenic particle detector utilizing electrothermal feedback and a SQUID readout. IEEE Trans Appl Supercond, 1995, 5: 2690–2693

    Article  Google Scholar 

  68. Irwin K. An application of electrothermal feedback for high resolution cryogenic particle detection. Appl Phys Lett, 1995, 66: 1998–2000

    Article  Google Scholar 

  69. Chervenak J A, Irwin K D, Grossman E N, et al. Superconducting multiplexer for arrays of transition edge sensors. Appl Phys Lett, 1999, 74: 4043–4045

    Article  Google Scholar 

  70. Chervenak J A, Grossman E N, Irwin K D, et al. Performance of multiplexed SQUID readout for cryogenic sensor arrays. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2000, 444: 107–110

    Article  Google Scholar 

  71. Benford D, Allen C, Chervenak J, et al. Multiplexed readout of superconducting bolometers. Int J Infrared Millimeter Waves, 2000, 21: 1909–1916

    Article  Google Scholar 

  72. Doriese W B, Ullom J N, Beall J A, et al. 14-pixel, multiplexed array of gamma-ray microcalorimeters with 47 eV energy resolution at 103 keV. Appl Phys Lett, 2007, 90: 193508

    Article  Google Scholar 

  73. Woodcraft A L, Ade P A R, Bintley D, et al. Electrical and optical measurements on the first SCUBA-2 prototype 1280 pixel submillimeter superconducting bolometer array. Rev Sci Instruments, 2007, 78: 024502

    Article  Google Scholar 

  74. de Korte P A J, Beyer J, Deiker S, et al. Time-division superconducting quantum interference device multiplexer for transition-edge sensors. Rev Sci Instruments, 2003, 74: 3807–3815

    Article  Google Scholar 

  75. Cunningham M, Ullom J, Miyazaki T, et al. High-resolution operation of frequency-multiplexed transition-edge photon sensors. Appl Phys Lett, 2002, 81: 159–161

    Article  Google Scholar 

  76. Yoon J, Clarke J, Gildemeister J M, et al. Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors. Appl Phys Lett, 2001, 78: 371–373

    Article  Google Scholar 

  77. Oxley P, Ade P A, Baccigalupi C, et al. The EBEX experiment. In: Proceedings of SPIE, 2004. 5543: 320–331

  78. Ruhl J, Ade P A, Carlstrom J E, et al. The south pole telescope. In: Proceedings of SPIE, 2004. 5498: 11–29

  79. Dobbs M, Halverson N W, Ade P A R, et al. APEX-SZ first light and instrument status. New Astron Rev, 2006, 50: 960–968

    Article  Google Scholar 

  80. Niemack M D, Beyer J, Cho H M, et al. Code-division SQUID multiplexing. Appl Phys Lett, 2010, 96: 163509

    Article  Google Scholar 

  81. Bennett D A, Mates J A, Gard J D, et al. Integration of TES microcalorimeters with microwave SQUID multiplexed readout. IEEE Trans Appl Superconduct, 2014, 25: 1–5

    Article  Google Scholar 

  82. Irwin K D, Lehnert K W. Microwave SQUID multiplexer. Appl Phys Lett, 2004, 85: 2107–2109

    Article  Google Scholar 

  83. Mates J A B, Becker D T, Bennett D A, et al. Simultaneous readout of 128 X-ray and gamma-ray transition-edge microcalorimeters using microwave SQUID multiplexing. Appl Phys Lett, 2017, 111: 062601

    Article  Google Scholar 

  84. Stanchfield S M, Ade P A R, Aguirre J, et al. Development of a microwave SQUID-multiplexed TES array for MUSTANG-2. J Low Temp Phys, 2016, 184: 460–465

    Article  Google Scholar 

  85. Smith S J, Adams J S, Bailey C N, et al. Small pitch transition-edge sensors with broadband high spectral resolution for solar physics. J Low Temp Phys, 2012, 167: 168–175

    Article  Google Scholar 

  86. Eckart M, Adams J, Bandler S, et al. Large-absorber TES X-ray microcalorimeters and the micro-X detector array. In: AIP Conference Proceedings, 2009. 1185: 699–702

  87. Morgan K M, Pappas C G, Bennett D A, et al. Dependence of transition width on current and critical current in transition-edge sensors. Appl Phys Lett, 2017, 110: 212602

    Article  Google Scholar 

  88. Hays-Wehle J P, Schmidt D R, Ullom J N, et al. Thermal conductance engineering for high-speed TES microcalorimeters. J Low Temp Phys, 2016, 184: 492–497

    Article  Google Scholar 

  89. Wollman D A, Nam S W, Newbury D E, et al. Superconducting transition-edge-microcalorimeter X-ray spectrometer with 2 eV energy resolution at 1.5 keV. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2000, 444: 145–150

    Article  Google Scholar 

  90. Wood G H, White B L. Pulses induced in tunneling currents between superconductors by alpha-particle bombardment. Appl Phys Lett, 1969, 15: 237–239

    Article  Google Scholar 

  91. Peacock A, Verhoeve P, Rando N, et al. Single optical photon detection with a superconducting tunnel junction. Nature, 1996, 381: 135–137

    Article  Google Scholar 

  92. Kozin M G, Romashkina I L, Sergeev S A, et al. STJ X-ray detectors with titanium sublayer. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2004, 520: 250–253

    Article  Google Scholar 

  93. Twerenbold D. Nonequilibrium model of the superconducting tunneling junction X-ray detector. Phys Rev B, 1986, 34: 7748–7759

    Article  Google Scholar 

  94. Gray K E. A superconducting transistor. Appl Phys Lett, 1978, 32: 392–395

    Article  Google Scholar 

  95. Lerch P, Zehnder A. Quantum Giaever detectors: STJ’s. In: Cryogenic Particle Detection. Berlin: Springer, 2005. 217–266

    Chapter  Google Scholar 

  96. Angloher G, Hettl P, Huber M, et al. Energy resolution of 12 eV at 5.9 keV from Al-superconducting tunnel junction detectors. J Appl Phys, 2001, 89: 1425–1429

    Article  Google Scholar 

  97. Ukibe M, Fujii G, Shiki S, et al. Modification of layer structures of superconducting tunnel junctions to improve X-ray energy resolution. J Low Temp Phys, 2016, 184: 200–205

    Article  Google Scholar 

  98. Doyle S, Naylon J, Cox J, et al. Kinetic inductance detectors for 200 µm astronomy. In: Proceedings of SPIE, 2006. 6275: 62751O

    Article  Google Scholar 

  99. Doyle S, Mauskopf P, Naylon J, et al. Lumped element kinetic inductance detectors. J Low Temp Phys, 2008, 151: 530–536

    Article  Google Scholar 

  100. Yang C, Niu R R, Guo Z S, et al. Lumped element kinetic inductance detectors based on two-gap MgB2 thin films. Appl Phys Lett, 2018, 112: 022601

    Article  Google Scholar 

  101. Nam S B. Theory of electromagnetic properties of superconducting and normal systems. I. Phys Rev, 1967, 156: 470–486

    Article  Google Scholar 

  102. Day P K, Leduc H G, Goldin A, et al. Antenna-coupled microwave kinetic inductance detectors. Nucl Instruments Methods Phys Res Sect A-Accelerators Spectrometers Detectors Associated Equipment, 2006, 559: 561–563

    Article  Google Scholar 

  103. Doyle S, Mauskopf P, Naylon J, et al. Lumped element kinetic inductance detectors. J Low Temp Phys, 2008, 151: 530–536

    Article  Google Scholar 

  104. Rösch M. Development of Lumped Element Kinetic Inductance Detectors for mm-wave Astronomy at the IRAM 30 m Telescope. Karlsruhe: KIT Scientific Publishing, 2014

    Google Scholar 

  105. Bueno J, Murugesan V, Karatsu K, et al. Ultrasensitive kilo-pixel imaging array of photon noise-limited kinetic inductance detectors over an octave of bandwidth for THz astronomy. J Low Temp Phys, 2018, 193: 96–102

    Article  Google Scholar 

  106. Zobrist N, Daal M, Corbin J Y, et al. Disk resonator design for kinetic inductance detectors. J Low Temp Phys, 2019, 194: 394–403

    Article  Google Scholar 

  107. O’Connell A D, Ansmann M, Bialczak R C, et al. Microwave dielectric loss at single photon energies and millikelvin temperatures. Appl Phys Lett, 2008, 92: 112903

    Article  Google Scholar 

  108. Baselmans J, Yates S J C, Barends R, et al. Noise and sensitivity of aluminum kinetic inductance detectors for sub-mm astronomy. J Low Temp Phys, 2008, 151: 524–529

    Article  Google Scholar 

  109. Gao J, Zmuidzinas J, Mazin B A, et al. Noise properties of superconducting coplanar waveguide microwave resonators. Appl Phys Lett, 2007, 90: 102507

    Article  Google Scholar 

  110. Marsili F, Najafi F, Dauler E, et al. Single-photon detectors based on ultranarrow superconducting nanowires. Nano Lett, 2011, 11: 2048–2053

    Article  Google Scholar 

  111. Caloz M, Perrenoud M, Autebert C, et al. High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors. Appl Phys Lett, 2018, 112: 061103

    Article  Google Scholar 

  112. Yang J K W, Kerman A J, Dauler E A, et al. Modeling the electrical and thermal response of superconducting nanowire single-photon detectors. IEEE Trans Appl Supercond, 2007, 17: 581–585

    Article  Google Scholar 

  113. Semenov A D, Gol’tsman G N, Korneev A A. Quantum detection by current carrying superconducting film. Phys C-Supercond, 2001, 351: 349–356

    Article  Google Scholar 

  114. Natarajan C M, Tanner M G, Hadfield R H. Superconducting nanowire single-photon detectors: physics and applications. Supercond Sci Technol, 2012, 25: 063001

    Article  Google Scholar 

  115. Renema J J, Gaudio R, Wang Q, et al. Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector. Phys Rev Lett, 2014, 112: 117604

    Article  Google Scholar 

  116. Eisaman M D, Fan J, Migdall A, et al. Invited review article: single-photon sources and detectors. Rev Sci Instrum, 2011, 82: 071101

    Article  Google Scholar 

  117. Semenov A, Engel A, Hübers H W, et al. Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips. Eur Phys J B, 2005, 47: 495–501

    Article  Google Scholar 

  118. Zotova A N, Vodolazov D Y. Photon detection by current-carrying superconducting film: a time-dependent Ginzburg-Landau approach. Phys Rev B, 2012, 85: 024509

    Article  Google Scholar 

  119. Bulaevskii L N, Graf M J, Batista C D, et al. Vortex-induced dissipation in narrow current-biased thin-film superconducting strips. Phys Rev B, 2011, 83: 144526

    Article  Google Scholar 

  120. Becker W. Advanced Time-Correlated Single Photon Counting Techniques. Berlin: Springer, 2005

    Book  Google Scholar 

  121. Zhang X. Characteristics of tungsten silicide and its application for single X-ray photon detection. Dissertation for Ph.D. Degree. Zurich: University of Zurich, 2018

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant No. 2017YFA0304000), National Natural Science Foundation of China (Grant Nos. 61671438, U1631240), Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), and Program of Shanghai Academic/Technology Research Leader (Grant No. 18XD1404600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixing You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Si, M. & You, L. Superconducting X-ray detectors. Sci. China Inf. Sci. 63, 180502 (2020). https://doi.org/10.1007/s11432-020-2932-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-2932-8

Keywords

Navigation