Skip to main content
Log in

Adaptive fuzzy backstepping control for attitude stabilization of flexible spacecraft with signal quantization and actuator faults

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this study, the fault-tolerant attitude control of flexible spacecraft is investigated over digital communication channels, where a uniform quantizer is considered with respect to the sensor signals and controller indexes. Further, an adaptive fuzzy backstepping control strategy has been developed for the considered attitude stabilization issue, where the adaptive fuzzy logic method is used to approximate the rigid-flexible coupled nonlinearity of the spacecraft. In this design, the online adjusting quantizer parameters are injected into the controller gains to simultaneously compensate for the quantization errors and time-varying actuator faults. In the proposed control method, the attitude stabilization task is achieved in the presence of external disturbances, time-varying actuator faults, and signal quantization. Finally, the practical examples are compared to demonstrate the effectiveness of the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Timmons K, Coderre K, Pratt W D, et al. The Orion spacecraft as a key element in a deep space gateway. In: Proceedings of IEEE Aerospace Conference, 2018

  2. Nasir A, Atkins E M, Kolmanovsky I. Robust science-optimal spacecraft control for circular orbit missions. IEEE Trans Syst Man Cybern Syst, 2020, 50: 923–934

    Article  Google Scholar 

  3. Meng D S, Liu H D, Li Y N, et al. Vibration suppression of a large flexible spacecraft for on-orbit operation. Sci China Inf Sci, 2017, 60: 050203

    Article  Google Scholar 

  4. Sun L, Huo W. Adaptive fuzzy control of spacecraft proximity operations using hierarchical fuzzy systems. IEEE/ASME Trans Mechatron, 2016, 21: 1629–1640

    Article  Google Scholar 

  5. McCamish S B, Romano M, Yun X. Autonomous distributed control of simultaneous multiple spacecraft proximity maneuvers. IEEE Trans Autom Sci Eng, 2010, 7: 630–644

    Article  Google Scholar 

  6. Zou A M, de Ruiter A H J, Kumar K D. Distributed attitude synchronization control for a group of flexible spacecraft using only attitude measurements. Inf Sci, 2016, 343: 66–78

    Article  MathSciNet  Google Scholar 

  7. Huang P F, Lu Y B, Wang M, et al. Postcapture attitude takeover control of a partially failed spacecraft with parametric uncertainties. IEEE Trans Autom Sci Eng, 2019, 16: 919–930

    Article  Google Scholar 

  8. Yin S, Xiao B, Ding S X, et al. A review on recent development of spacecraft attitude fault tolerant control system. IEEE Trans Ind Electron, 2016, 63: 3311–3320

    Article  Google Scholar 

  9. Lu K F, Xia Y Q, Zhu Z, et al. Sliding mode attitude tracking of rigid spacecraft with disturbances. J Franklin Inst, 2012, 349: 413–440

    Article  MathSciNet  MATH  Google Scholar 

  10. Lu K F, Xia Y Q, Yu C M, et al. Finite-time tracking control of rigid spacecraft under actuator saturations and faults. IEEE Trans Autom Sci Eng, 2016, 13: 368–381

    Article  Google Scholar 

  11. Sun L. Adaptive fault-tolerant constrained control of cooperative spacecraft rendezvous and docking. IEEE Trans Ind Electron, 2020, 67: 3107–3115

    Article  Google Scholar 

  12. Qiao J Z, Li Z X, Xu J W, et al. Composite nonsingular terminal sliding mode attitude controller for spacecraft with actuator dynamics under matched and mismatched disturbances. IEEE Trans Ind Inf, 2020, 16: 1153–1162

    Article  Google Scholar 

  13. Sun H B, Hou L L, Zong G D, et al. Fixed-time attitude tracking control for spacecraft with input quantization. IEEE Trans Aerosp Electron Syst, 2019, 55: 124–134

    Article  Google Scholar 

  14. Zhang Z, Shi Y, Zhang Z X, et al. Modified order-reduction method for distributed control of multi-spacecraft networks with time-varying delays. IEEE Trans Control Netw Syst, 2018, 5: 79–92

    Article  MathSciNet  MATH  Google Scholar 

  15. Lyu J T, Qin J H, Ma Q C, et al. Finite-time attitude synchronisation for multiple spacecraft. IET Control Theory Appl, 2016, 41: 1106–1114

    Article  MathSciNet  Google Scholar 

  16. Chen T, Wen H, Wei Z T. Distributed attitude tracking for multiple flexible spacecraft described by partial differential equations. Acta Astronaut, 2019, 159: 637–645

    Article  Google Scholar 

  17. Sun G H, Xu S D, Li Z. Finite-time fuzzy sampled-data control for nonlinear flexible spacecraft with stochastic actuator failures. IEEE Trans Ind Electron, 2017, 64: 3851–3861

    Article  Google Scholar 

  18. Jiang B X, Lu J Q, Liu Y, et al. Periodic event-triggered adaptive control for attitude stabilization under input saturation. IEEE Trans Circ Syst I, 2020, 67: 249–258

    MathSciNet  MATH  Google Scholar 

  19. Sun H B, Hou L L, Zong G D, et al. Composite anti-disturbance attitude and vibration control for flexible spacecraft. IET Control Theory Appl, 2017, 39: 2383–2390

    Article  MathSciNet  Google Scholar 

  20. Cao L, Xiao B, Golestani M, et al. Faster fixed-time control of flexible spacecraft attitude stabilization. IEEE Trans Ind Inf, 2020, 16: 1281–1290

    Article  Google Scholar 

  21. Agarwal A, Vukovich G. Proportional-derivative-acceleration controller design for spacecraft with flexible appendages. Int J Space Sci Eng, 2019, 5: 123–137

    Article  Google Scholar 

  22. Liu L, Liu Y J, Tong S. Neural networks-based adaptive finite-time fault-tolerant control for a class of strict-feedback switched nonlinear systems. IEEE Trans Cybern, 2019, 49: 2536–2545

    Article  Google Scholar 

  23. Zhou Q, Du P H, Li H Y, et al. Adaptive fixed-time control of error-constrained pure-feedback interconnected nonlinear systems. IEEE Trans Syst Man Cybern Syst, 2020. doi: https://doi.org/10.1109/TSMC.2019.2961371

  24. Zhao X M, Mo H, Yan K F, et al. Type-2 fuzzy control for driving state and behavioral decisions of unmanned vehicle. IEEE/CAA J Autom Sin, 2020, 7: 178–186

    MathSciNet  Google Scholar 

  25. Yang X B, Zheng X L, Chen Y H. Position tracking control law for an electro-hydraulic servo system based on backstepping and extended differentiator. IEEE/ASME Trans Mechatron, 2018, 23: 132–140

    Article  Google Scholar 

  26. Basin M V, Yu P, Shtessel Y B. Hypersonic missile adaptive sliding mode control using finite- and fixed-time observers. IEEE Trans Ind Electron, 2018, 65: 930–941

    Article  Google Scholar 

  27. Pukdeboon C. Extended state observer-based third-order sliding mode finite-time attitude tracking controller for rigid spacecraft. Sci China Inf Sci, 2019, 62: 012206

    Article  MathSciNet  Google Scholar 

  28. Chen L H, Liu M, Huang X L, et al. Adaptive fuzzy sliding mode control for network-based nonlinear systems with actuator failures. IEEE Trans Fuzzy Syst, 2018, 26: 1311–1323

    Article  Google Scholar 

  29. Ren Z, Cheng P, Shi L, et al. State estimation over delayed mutihop network. IEEE Trans Autom Control, 2018, 63: 3545–3550

    Article  MathSciNet  MATH  Google Scholar 

  30. Karimi H R, Gao H J. New delay-dependent exponential synchronization for uncertain neural networks with mixed time delays. IEEE Trans Syst Man Cybern B, 2010, 40: 173–185

    Article  Google Scholar 

  31. Yang Z Q, Cheng P, Chen J M. Learning-based jamming attack against low-duty-cycle networks. IEEE Trans Depend Secure Comput, 2017, 14: 650–663

    Article  Google Scholar 

  32. Song X, Zheng W X. Linear estimation for discrete-time periodic systems with unknown measurement input and missing measurements. ISA Trans, 2019, 95: 164–172

    Article  Google Scholar 

  33. Xia W, Zheng W X, Xu S. Event-triggered filter design for Markovian jump delay systems with nonlinear perturbation using quantized measurement. Int J Robust Nonlinear Control, 2019, 29: 4644–4664

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu J J, Xu L, Xie L H, et al. Decentralized control for linear systems with multiple input channels. Sci China Inf Sci, 2019, 62: 052202

    Article  MathSciNet  Google Scholar 

  35. Jiang B P, Karimi H R, Kao Y G, et al. Reduced-order adaptive sliding mode control for nonlinear switching semi-Markovian jump delayed systems. Inf Sci, 2019, 477: 334–348

    Article  MathSciNet  MATH  Google Scholar 

  36. Huang C, Zhang X, Lam H K, et al. Synchronization analysis for nonlinear complex networks with reaction-diffusion terms using fuzzy-model-based approach. IEEE Trans Fuzzy Syst, 2020. doi: https://doi.org/10.1109/TFUZZ.2020.2974143

  37. Zhu S Y, Liu Y, Lou Y J, et al. Stabilization of logical control networks: an event-triggered control approach. Sci China Inf Sci, 2020, 63: 112203

    Article  MathSciNet  Google Scholar 

  38. Zhou Q, Wang W, Ma H, et al. Event-triggered fuzzy adaptive containment control for nonlinear multi-agent systems with unknown Bouc-Wen hysteresis input. IEEE Trans Fuzzy Syst, 2019. doi: https://doi.org/10.1109/TFUZZ.2019.2961642

  39. Wang W, Liang H J, Pan Y N, et al. Prescribed performance adaptive fuzzy containment control for nonlinear multiagent systems using disturbance observer. IEEE Trans Cybern, 2020, 50: 3879–3891

    Article  Google Scholar 

  40. Chen Z Y, Han Q L, Yan Y M, et al. How often should one update control and estimation: review of networked triggering techniques. Sci China Inf Sci, 2020, 63: 150201

    Article  MathSciNet  Google Scholar 

  41. Su Y X, Wang Q L, Sun C Y. Self-triggered consensus control for linear multi-agent systems with input saturation. IEEE/CAA J Autom Sin, 2020, 7: 150–157

    Article  MathSciNet  Google Scholar 

  42. Ma H, Li H Y, Lu R Q, et al. Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances. Sci China Inf Sci, 2020, 63: 150212

    Article  MathSciNet  Google Scholar 

  43. Cai D H, Zou H G, Wang J Z, et al. Event-triggered attitude tracking for rigid spacecraft. Sci China Inf Sci, 2019, 62: 222202

    Article  MathSciNet  Google Scholar 

  44. Lyke J C. Plug-and-play satellites. IEEE Spectr, 2012, 49: 36–42

    Article  Google Scholar 

  45. Liu M, Zhang L X, Shi P, et al. Sliding mode control of continuous-time Markovian jump systems with digital data transmission. Automatica, 2017, 80: 200–209

    Article  MathSciNet  MATH  Google Scholar 

  46. Tong S C, Wang T, Li Y M. Fuzzy adaptive actuator failure compensation control of uncertain stochastic nonlinear systems with unmodeled dynamics. IEEE Trans Fuzzy Syst, 2014, 22: 563–574

    Article  Google Scholar 

  47. Wang L X. Stable adaptive fuzzy control of nonlinear systems. IEEE Trans Fuzzy Syst, 1993, 1: 146–155

    Article  Google Scholar 

  48. Cao X B, Yue C F, Liu M. Fault-tolerant sliding mode attitude tracking control for flexible spacecraft with disturbance and modeling uncertainty. Adv Mech Eng, 2017, 9: 1–9

    Google Scholar 

  49. Gao Z, Zhu Z H. Adaptive fast sliding model attitude tracking control for flexible spacecraft. In: Proceedings of the 4th International Conference on Control Science and Systems Engineering (ICCSSE), 2018. 264–268

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61833009, 61473096, 61690212, 91438202, 61690210, 61333003, 61673133), National Key Research and Development Plan (Grant No. 2016YFB0500901), and Heilongjiang Touyan Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Liu, M. & Duan, G. Adaptive fuzzy backstepping control for attitude stabilization of flexible spacecraft with signal quantization and actuator faults. Sci. China Inf. Sci. 64, 152205 (2021). https://doi.org/10.1007/s11432-020-2949-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-2949-5

Keywords