Skip to main content
Log in

Novel sliding-mode disturbance observer-based tracking control with applications to robot manipulators

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper proposes a sliding-mode disturbance observer (SMDOB)-based tracking controller for a class of nonlinear systems with modeling uncertainties and external disturbances. The SMDOB is constructed using an extended state observer embedded by a filtered sliding mode term. The chattering caused by the sliding mode is compressed by the frequency bandwidths of both the extended state observer and the control system. The novelties of the proposed controller are as follows: (1) The semiglobal asymptotical stability of the combined controller-observer system is guaranteed without the boundedness assumption of the time derivatives of modeling uncertainties; (2) the SMDOB can be implemented with a low complexity because of only three parameters to be tuned. Applications to robot manipulators illustrate the effectiveness of the SMDOB-based tracking control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng L, Lin Y, Hou Z G, et al. Passive separation approach to adaptive visual tracking for robotic systems. IEEE/ASME Trans Mechatron, 2011, 16: 1155–1163

    Article  Google Scholar 

  2. Cheng L, Hou Z G, Tan M. Adaptive neural network tracking control for manipulators with uncertain kinematics, dynamics and actuator model. Automatica, 2009, 45: 2312–2318

    Article  MathSciNet  Google Scholar 

  3. Sun T, Peng L, Cheng L, et al. Composite learning enhanced robot impedance control. IEEE Trans Neural Netw Learn Syst, 2020, 31: 1052–1059

    Article  MathSciNet  Google Scholar 

  4. Sun T R, Cheng L, Peng L, et al. Learning impedance control of robots with enhanced transient and steady-state control performances. Sci China Inf Sci, 2020, 63: 192205

    Article  MathSciNet  Google Scholar 

  5. Pan Y, Yu H Y. Composite learning robot control with guaranteed parameter convergence. Automatica, 2018, 89: 398–406

    Article  MathSciNet  Google Scholar 

  6. Ding S, Li S. Second-order sliding mode controller design subject to mismatched term. Automatica, 2017, 77: 388–392

    Article  MathSciNet  Google Scholar 

  7. Shao S Y, Chen M. Sliding-mode-disturbance-observer-based adaptive neural control of uncertain discrete-time systems. Sci China Inf Sci, 2020, 63: 149204

    Article  MathSciNet  Google Scholar 

  8. Pan Y, Yu H, Er M J. Adaptive neural PD control with semiglobal asymptotic stabilization guarantee. IEEE Trans Neural Netw Learn Syst, 2014, 25: 2264–2274

    Article  Google Scholar 

  9. Sun T, Cheng L, Wang W, et al. Semiglobal exponential control of Euler-Lagrange systems using a sliding-mode disturbance observer. Automatica, 2020, 112: 108677

    Article  MathSciNet  Google Scholar 

  10. Ding S, Chen W H, Mei K, et al. Disturbance observer design for nonlinear systems represented by input-output models. IEEE Trans Ind Electron, 2020, 67: 1222–1232

    Article  Google Scholar 

  11. Chen W H, Ballance D J, Gawthrop P J, et al. A nonlinear disturbance observer for robotic manipulators. IEEE Trans Ind Electron, 2000, 47: 932–938

    Article  Google Scholar 

  12. Yang Y, Du J, Liu H, et al. A trajectory tracking robust controller of surface vessels with disturbance uncertainties. IEEE Trans Contr Syst Technol, 2014, 22: 1511–1518

    Article  Google Scholar 

  13. Back J, Shim H. Adding robustness to nominal output-feedback controllers for uncertain nonlinear systems: a nonlinear version of disturbance observer. Automatica, 2008, 44: 2528–2537

    Article  MathSciNet  Google Scholar 

  14. Yan W, Pang C K, Du C. Disturbance observer-based multirate control for rejecting periodic disturbances to the Nyquist frequency and beyond. Automatica, 2017, 82: 49–58

    Article  MathSciNet  Google Scholar 

  15. Huang J, Ri S, Fukuda T, et al. A disturbance observer based sliding mode control for a class of underactuated robotic system with mismatched uncertainties. IEEE Trans Automat Contr, 2019, 64: 2480–2487

    Article  MathSciNet  Google Scholar 

  16. Chen W H. Disturbance observer based control for nonlinear systems. IEEE/ASME Trans Mechatron, 2004, 9: 706–710

    Article  Google Scholar 

  17. Wang X, Li S, Yu X, et al. Distributed active anti-disturbance consensus for leader-follower higher-order multi-agent systems with mismatched disturbances. IEEE Trans Automat Contr, 2017, 62: 5795–5801

    Article  MathSciNet  Google Scholar 

  18. Yang J, Zheng W X, Li S, et al. Design of a prediction-accuracy-enhanced continuous-time mpc for disturbed systems via a disturbance observer. IEEE Trans Ind Electron, 2015, 62: 5807–5816

    Article  Google Scholar 

  19. Young K D, Utkin V I, Ozguner U. A control engineer’s guide to sliding mode control. IEEE Trans Contr Syst Technol, 1999, 7: 328–342

    Article  Google Scholar 

  20. Chen X K, Komada S, Fukuda T. Design of a nonlinear disturbance observer. IEEE Trans Ind Electron, 2000, 47: 429–437

    Article  Google Scholar 

  21. Lu Y S, Cheng C M, Cheng C H. Non-overshooting PI control of variable-speed motor drives with sliding perturbation observers. Mechatronics, 2005, 15: 1143–1158

    Article  Google Scholar 

  22. Wang B, Dong Z, Yu Y, et al. Static-errorless deadbeat predictive current control using second-order sliding-mode disturbance observer for induction machine drives. IEEE Trans Power Electron, 2018, 33: 2395–2403

    Article  Google Scholar 

  23. Lu Y S. Sliding-mode disturbance observer with switching-gain adaptation and its application to optical disk drives. IEEE Trans Ind Electron, 2009, 56: 3743–3750

    Article  Google Scholar 

  24. Chen M, Wu Q X, Cui R X. Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems. ISA Trans, 2013, 52: 198–206

    Article  Google Scholar 

  25. Chen M, Shi P, Lim C C. Robust constrained control for MIMO nonlinear systems based on disturbance observer. IEEE Trans Automat Contr, 2015, 60: 3281–3286

    Article  MathSciNet  Google Scholar 

  26. Zhu Y, Qiao J, Guo L. Adaptive sliding mode disturbance observer-based composite control with prescribed performance of space manipulators for target capturing. IEEE Trans Ind Electron, 2019, 66: 1973–1983

    Article  Google Scholar 

  27. Makkar C, Hu G, Sawyer W G, et al. Lyapunov-based tracking control in the presence of uncertain nonlinear parameterizable friction. IEEE Trans Automat Contr, 2007, 52: 1988–1994

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Key Research and Development Project (Grant No. 2019YFB1-312503), National Natural Science Foundation of China (Grant Nos. U1913209, 61720106012, 61873268, 61633016), Beijing Natural Science Foundation (Grant Nos. JQ19020, L182060), and Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB32040000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T., Cheng, L., Hou, Z. et al. Novel sliding-mode disturbance observer-based tracking control with applications to robot manipulators. Sci. China Inf. Sci. 64, 172205 (2021). https://doi.org/10.1007/s11432-020-3043-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3043-y

Keywords

Navigation