Skip to main content
Log in

Multimodal hyperspectral remote sensing: an overview and perspective

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Since the advent of hyperspectral remote sensing in the 1980s, it has made important achievements in aerospace and aviation field and been applied in many fields. Conventional hyperspectral imaging spectrometer extends the number of spectral bands to dozens or hundreds, and provides spatial distribution of the reflected solar radiation from the scene of observation at the same time. Nowadays, with the fast development of new technology in the fields of information and photoelectricity sensing, and the popularity of unmanned aerial vehicle, hyperspectral remote sensing imaging presents the new trends of multimodality and acquires integration information while keeping high or very-high spectral resolution, especially, high temporal even real time sensing and stereo sensing. Therefore, three important modes of hyperspectral imaging come into existence: (1) multitemporal hyperspectral imaging, which refers to the observation of same region at different dates; (2) hyperspectral video imaging, which captures full frame spectral images in real-time; (3) hyperspectral stereo imaging, which obtains the full dimension information (including 2D image, elevation, and spectra) of observed scene. Along this perspective, firstly, the current researches on hyperspectral remote sensing and image processing are briefly reviewed, and then, comprehensive descriptions of the aforementioned three main hyperspectral imaging modes are carried out from the following four aspects: fundamental principle of new mode of hyperspectral imaging, corresponding scientific data acquisition, data processing and application, and potential challenges in data representation, feature learning and interpretation. Through the analysis of development trend of hyperspectral imaging and current research situation, we hope to provide a direction for future research on multimodal hyperspectral remote sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green R O, Chrien T G, Enmark H T. First results from the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens Environ, 1987, 44: 127–143

    Google Scholar 

  2. Sankey T T, McVay J, Swetnam T L, et al. UAV hyperspectral and lidar data and their fusion for arid and semi-arid land vegetation monitoring. Remote Sens Ecol Conserv, 2018, 4: 20–33

    Article  Google Scholar 

  3. Govender M, Chetty K, Bulcock H. A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water Sa, 2007, 33: 145–152

    Google Scholar 

  4. Luo B, Yang C, Chanussot J, et al. Crop yield estimation based on unsupervised linear unmixing of multidate hyperspectral imagery. IEEE Trans Geosci Remote Sens, 2012, 51: 162–173

    Article  Google Scholar 

  5. Morier T, Cambouris A N, Chokmani K. In-season nitrogen status assessment and yield estimation using hyperspectral vegetation indices in a potato crop. Agronomy J, 2015, 107: 1295–1309

    Article  Google Scholar 

  6. Moroni M, Lupo E, Marra E, et al. Hyperspectral image analysis in environmental monitoring: setup of a new tunable filter platform. Procedia Environ Sci, 2013, 19: 885–894

    Article  Google Scholar 

  7. Honkavaara E, Hakala T, Markelin L, et al. Autonomous hyperspectral UAS photogrammetry for environmental monitoring applications. ISPRS Archives, 2014, XL-1: 155–159

    Google Scholar 

  8. Luft L, Neumann C, Freude M, et al. Hyperspectral modeling of ecological indicators — a new approach for monitoring former military training areas. Ecol Indicators, 2014, 46: 264–285

    Article  Google Scholar 

  9. Mucher C A, Kooistra L, Vermeulen M, et al. Quantifying structure of Natura 2000 heathland habitats using spectral mixture analysis and segmentation techniques on hyperspectral imagery. Ecol Indic, 2013, 33: 71–81

    Article  Google Scholar 

  10. Briottet X, Boucher Y, Dimmeler A, et al. Military applications of hyperspectral imagery. In: Proceedings of SPIE, Defense and Security Symposium, Orlando, 2006. 6239: 62390B

  11. Kastek M, Piatkowski T, Dulski R, et al. Multispectral and hyperspectral measurements of soldier’s camouflage equipment. In: Proceedings of SPIE, Defense, Security, and Sensing, Baltimore, 2012. 8382: 83820K

  12. Richards J A, Jia X. Remote Sensing Digital Image Analysis. Berlin: Springer, 1999

  13. Tong Q, Xue Y, Zhang L. Progress in hyperspectral remote sensing science and technology in china over the past three decades. IEEE J Sel Top Appl Earth Observ Remote Sens, 2014, 7: 70–91

    Article  Google Scholar 

  14. Gerhart T, Sunu J, Lieu L, et al. Detection and tracking of gas plumes in LWIR hyperspectral video sequence data. In: Proceedings of SPIE, Defense, Security, and Sensing, Baltimore, 2013. 8743: 87430J

  15. Tochon G, Chanussot J, Gilles J, et al. Gas plume detection and tracking in hyperspectral video sequences using binary partition trees. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, 2014. 1–4

  16. Shaw G, Manolakis D. Signal processing for hyperspectral image exploitation. IEEE Signal Process Mag, 2002, 19: 12–16

    Article  Google Scholar 

  17. Stein D W J, Beaven S G, Hoff L E, et al. Anomaly detection from hyperspectral imagery. IEEE Signal Process Mag, 2002, 19: 58–69

    Article  Google Scholar 

  18. Manolakis D, Shaw G. Detection algorithms for hyperspectral imaging applications. IEEE Signal Process Mag, 2002, 19: 29–43

    Article  Google Scholar 

  19. Keshava N, Mustard J F. Spectral unmixing. IEEE Signal Process Mag, 2002, 19: 44–57

    Article  Google Scholar 

  20. Landgrebe D. Hyperspectral image data analysis. IEEE Signal Process Mag, 2002, 19: 17–28

    Article  Google Scholar 

  21. Camps-Valls G, Tuia D, Bruzzone L, et al. Advances in hyperspectral image classification. IEEE Signal Process Mag, 2014, 31: 45–54

    Article  Google Scholar 

  22. Manolakis D, Truslow E, Pieper M, et al. Detection algorithms in hyperspectral imaging systems: an overview of practical algorithms. IEEE Signal Process Mag, 2014, 31: 24–33

    Article  Google Scholar 

  23. Nasrabadi N M. Hyperspectral target detection: an overview of current and future challenges. IEEE Signal Process Mag, 2014, 31: 34–44

    Article  Google Scholar 

  24. Li W, Du Q. A survey on representation-based classification and detection in hyperspectral remote sensing imagery. Pattern Recognit Lett, 2015, 83: 115–123

    Article  Google Scholar 

  25. Arce G R, Brady D J, Carin L, et al. Compressive coded aperture spectral imaging: an introduction. IEEE Signal Process Mag, 2014, 31: 105–115

    Article  Google Scholar 

  26. Willett R, Duarte M, Davenport M, et al. Sparsity and structure in hyperspectral imaging: sensing, reconstruction, and target detection. IEEE Signal Process Mag, 2014, 31: 116–126

    Article  Google Scholar 

  27. Sami ul H Q, Tao L M, Sun F C, et al. A fast and robust sparse approach for hyperspectral data classification using a few labeled samples. IEEE Trans Geosci Remote Sens, 2012, 50: 2287–2302

    Article  Google Scholar 

  28. Chen Y, Nasrabadi N M, Tran T D. Sparse representation for target detection in hyperspectral imagery. IEEE J Sel Top Appl Earth Observ Remote Sens, 2011, 5: 629–640

    Google Scholar 

  29. Chen J, Jiao L. Hyperspectral imagery classification using local collaborative representation. Int J Remote Sens, 2015, 36: 734–748

    Article  Google Scholar 

  30. Li W, Du Q. Collaborative representation for hyperspectral anomaly detection. IEEE Trans Geosci Remote Sens, 2015, 53: 1463–1474

    Article  Google Scholar 

  31. Zhang H, Li J, Huang Y, et al. A nonlocal weighted joint sparse representation classification method for hyperspectral imagery. IEEE J Sel Top Appl Earth Observ Remote Sens, 2014, 7: 2056–2065

    Article  Google Scholar 

  32. Li J, Zhang H, Zhang L, et al. Hyperspectral anomaly detection by the use of background joint sparse representation. IEEE J Sel Top Appl Earth Observ Remote Sens, 2015, 8: 2523–2533

    Article  Google Scholar 

  33. Chen Y, Nasrabadi N M, Tran T D. Simultaneous joint sparsity model for target detection in hyperspectral imagery. IEEE Geosci Remote Sens Lett, 2011, 8: 676–680

    Article  Google Scholar 

  34. Li W, Du Q. Joint within-class collaborative representation for hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens, 2014, 7: 2200–2208

    Article  Google Scholar 

  35. Li J, Zhang H, Huang Y, et al. Hyperspectral image classification by nonlocal joint collaborative representation with a locally adaptive dictionary. IEEE Trans Geosci Remote Sens, 2014, 52: 3707–3719

    Article  Google Scholar 

  36. Chen Y, Nasrabadi N M, Tran T D. Hyperspectral image classification via kernel sparse representation. IEEE Trans Geosci Remote Sens, 2013, 51: 217–231

    Article  Google Scholar 

  37. Liu J, Wu Z, Wei Z, et al. Spatial-spectral kernel sparse representation for hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens, 2013, 6: 2462–2471

    Article  Google Scholar 

  38. Li W, Du Q, Xiong M. Kernel collaborative representation with Tikhonov regularization for hyperspectral image classification. IEEE Geosci Remote Sens Lett, 2015, 12: 48–52

    Google Scholar 

  39. Li J Y, Zhang H Y, Zhang L P. Column-generation kernel nonlocal joint collaborative representation for hyperspectral image classification. ISPRS J Photogrammetry Remote Sens, 2014, 94: 25–36

    Article  Google Scholar 

  40. Camps-Valls G, Bruzzone L. Kernel-based methods for hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2005, 43: 1351–1362

    Article  Google Scholar 

  41. Mountrakis G, Im J, Ogole C. Support vector machines in remote sensing: a review. ISPRS J Photogrammetry Remote Sens, 2011, 66: 247–259

    Article  Google Scholar 

  42. Niazmardi S, Demir B, Bruzzone L, et al. Multiple kernel learning for remote sensing image classification. IEEE Trans Geosci Remote Sens, 2018, 56: 1425–1443

    Article  Google Scholar 

  43. Gu Y, Chanussot J, Jia X, et al. Multiple kernel learning for hyperspectral image classification: a review. IEEE Trans Geosci Remote Sens, 2017, 55: 6547–6565

    Article  Google Scholar 

  44. Gu Y, Wang C, You D, et al. Representative multiple kernel learning for classification in hyperspectral imagery. IEEE Trans Geosci Remote Sens, 2012, 50: 2852–2865

    Article  Google Scholar 

  45. Gu Y F, Wang Q W, Jia X P, et al. A novel MKL model of integrating LiDAR data and MSI for urban area classification. IEEE Trans Geosci Remote Sens, 2015, 53: 5312–5326

    Article  Google Scholar 

  46. Gu Y, Wang Q, Wang H, et al. Multiple kernel learning via low-rank nonnegative matrix factorization for classification of hyperspectral imagery. IEEE J Sel Top Appl Earth Observ Remote Sens, 2014, 8: 2739–2751

    Article  Google Scholar 

  47. Wang Q, Gu Y, Tuia D. Discriminative multiple kernel learning for hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2016, 54: 3912–3927

    Article  Google Scholar 

  48. Liu T, Gu Y, Jia X, et al. Class-specific sparse multiple kernel learning for spectral-spatial hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2016, 54: 7351–7365

    Article  Google Scholar 

  49. Rakotomamonjy A, Bach F, Stephane C, et al. SimpleMKL. J Mach Learn Res, 2008, 9: 2491–2521

    MathSciNet  MATH  Google Scholar 

  50. Gu Y, Gao G, Zuo D, et al. Model selection and classification with multiple kernel learning for hyperspectral images via sparsity. IEEE J Sel Top Appl Earth Observ Remote Sens, 2014, 7: 2119–2130

    Article  Google Scholar 

  51. Gu Y, Wang Q, Xie B. Multiple kernel sparse representation for airborne LiDAR data classification. IEEE Trans Geosci Remote Sens, 2016, 55: 1085–1105

    Article  Google Scholar 

  52. Gu Y, Liu H. Sample-screening MKL method via boosting strategy for hyperspectral image classification. Neurocomputing, 2015, 173: 1630–1639

    Article  Google Scholar 

  53. Wang Y, Gu Y, Gao G, et al. Hyperspectral image classification with multiple kernel Boosting algorithm. In: Proceedings of IEEE International Conference on Image Processing, Paris, 2015. 5047–5051

  54. Gu Y, Liu T, Jia X, et al. Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2016, 54: 3235–3247

    Article  Google Scholar 

  55. Lunga D, Prasad S, Crawford M M, et al. Manifold-learning-based feature extraction for classification of hyperspectral data: a review of advances in manifold learning. IEEE Signal Process Mag, 2014, 31: 55–66

    Article  Google Scholar 

  56. Hong D, Yokoya N, Zhu X X. Learning a robust local manifold representation for hyperspectral dimensionality reduction. IEEE J Sel Top Appl Earth Observ Remote Sens, 2017, 10: 2960–2975

    Article  Google Scholar 

  57. He J, Zhang L, Wang Q, et al. Using diffusion geometric coordinates for hyperspectral imagery representation. IEEE Geosci Remote Sens Lett, 2009, 6: 767–771

    Article  Google Scholar 

  58. Mohan A, Sapiro G, Bosch E. Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images. IEEE Geosci Remote Sens Lett, 2007, 4: 206–210

    Article  Google Scholar 

  59. Ma L, Zhang X, Yu X, et al. Spatial regularized local manifold learning for classification of hyperspectral images. IEEE J Sel Top Appl Earth Observ Remote Sens, 2015, 9: 609–624

    Article  Google Scholar 

  60. Ma L, Crawford M M, Yang X, et al. Local-manifold-learning-based graph construction for semisupervised hyperspectral image classification. IEEE Trans Geosci Remote Sensing, 2014, 53: 2832–2844

    Article  Google Scholar 

  61. Ziemann A K, Messinger D W. An adaptive locally linear embedding manifold learning approach for hyperspectral target detection. In: Proceedings of SPIE Defense and Security, Baltimore, 2015. 9472: 94720O

  62. Ziemann A K, Theiler J, Messinger D W. Hyperspectral target detection using manifold learning and multiple target spectra. In: Proceedings of IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, 2015. 1–7

  63. Heylen R, Scheunders P. Calculation of geodesic distances in nonlinear mixing models: application to the generalized bilinear model. IEEE Geosci Remote Sens Lett, 2012, 9: 644–648

    Article  Google Scholar 

  64. Chi J, Crawford M M. Selection of landmark points on nonlinear manifolds for spectral unmixing using local homogeneity. Geosci Remote Sens Lett IEEE, 2012, 10: 711–715

    Article  Google Scholar 

  65. Chen Y, Lin Z, Zhao X, et al. Deep learning-based classification of hyperspectral data. IEEE J Sel Top Appl Earth Observ Remote Sens, 2014, 7: 2094–2107

    Article  Google Scholar 

  66. Gao L, Gu D, Zhuang L, et al. Combining t-distributed stochastic neighbor embedding with convolutional neural networks for hyperspectral image classification. IEEE Geosci Remote Sens Lett, 2020, 17: 1368–1372

    Article  Google Scholar 

  67. Zhang L, Zhang L, Du B. Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geosci Remote Sens Mag, 2016, 4: 22–40

    Article  Google Scholar 

  68. Audebert N, Le Saux B, Lefevre S. Deep learning for classification of hyperspectral data: a comparative review. IEEE Geosci Remote Sens Mag, 2019, 7: 159–173

    Article  Google Scholar 

  69. Rasti B, Hong D, Hang R, et al. Feature extraction for hyperspectral imagery: the evolution from shallow to deep. IEEE Geosci Remote Sens Mag, 2020. doi: https://doi.org/10.1109/MGRS.2020.2979764

  70. Ghamisi P, Maggiori E, Li S T, et al. New frontiers in spectral-spatial hyperspectral image classification: the latest advances based on mathematical morphology, markov random fields, segmentation, sparse representation, and deep learning. IEEE Geosci Remote Sens Mag, 2018, 6: 10–43

    Article  Google Scholar 

  71. Xu F, Hu C, Li J, et al. Special focus on deep learning in remote sensing image processing. Sci China Inf Sci, 2020, 63: 140300

    Article  Google Scholar 

  72. Li J, Li Y F, He L, et al. Spatio-temporal fusion for remote sensing data: an overview and new benchmark. Sci China Inf Sci, 2020, 63: 140301

    Article  MathSciNet  Google Scholar 

  73. Li Y F, Li J, He L, et al. A new sensor bias-driven spatio-temporal fusion model based on convolutional neural networks. Sci China Inf Sci, 2020, 63: 140302

    Article  Google Scholar 

  74. Hou X Y, Ao W, Song Q, et al. FUSAR-Ship: building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition. Sci China Inf Sci, 2020, 63: 140303

    Article  Google Scholar 

  75. Cui K, Hu C, Wang R, et al. Deep-learning-based extraction of the animal migration patterns from weather radar images. Sci China Inf Sci, 2020, 63: 140304

    Article  Google Scholar 

  76. He N J, Fang L Y, Plaza A. Hybrid first and second order attention Unet for building segmentation in remote sensing images. Sci China Inf Sci, 2020, 63: 140305

    Article  Google Scholar 

  77. Liu X B, Qiao Y L, Xiong Y H, et al. Cascade conditional generative adversarial nets for spatial-spectral hyperspectral sample generation. Sci China Inf Sci, 2020, 63: 140306

    Article  Google Scholar 

  78. Gu Y F, Liu H, Wang T F, et al. Deep feature extraction and motion representation for satellite video scene classification. Sci China Inf Sci, 2020, 63: 140307

    Article  Google Scholar 

  79. Lahat D, Adali T, Jutten C. Multimodal data fusion: an overview of methods, challenges, and prospects. Proc IEEE, 2015, 103: 1449–1477

    Article  Google Scholar 

  80. Dalla M M, Prasad S, Pacifici F, et al. Challenges and opportunities of multimodality and data fusion in remote sensing. Proc IEEE, 2015, 103: 1585–1601

    Article  Google Scholar 

  81. Gomez-Chova L, Tuia D, Moser G, et al. Multimodal classification of remote sensing images: a review and future directions. Proc IEEE, 2015, 103: 1560–1584

    Article  Google Scholar 

  82. Camps-Valls G, Gomez-Chova L, Munoz-Mari J, et al. Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett, 2006, 3: 93–97

    Article  Google Scholar 

  83. Tuia D, Ratle F, Pozdnoukhov A, et al. Multisource composite kernels for urban-image classification. IEEE Geosci Remote Sens Lett, 2010, 7: 88–92

    Article  Google Scholar 

  84. Volpi M, Camps-Valls G, Tuia D. Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis. ISPRS J Photogrammetry Remote Sens, 2015, 107: 50–63

    Article  Google Scholar 

  85. Tuia D, Camps-Valls G, Matasci G, et al. Learning relevant image features with multiple-kernel classification. IEEE Trans Geosci Remote Sens, 2010, 48: 3780–3791

    Article  Google Scholar 

  86. Liu W, Qin R. A multikernel domain adaptation method for unsupervised transfer learning on cross-source and cross-region remote sensing data classification. IEEE Trans Geosci Remote Sens, 2020, 58: 4279–4289

    Article  Google Scholar 

  87. Li S, Yin H, Fang L. Remote sensing image fusion via sparse representations over learned dictionaries. IEEE Trans Geosci Remote Sens, 2013, 51: 4779–4789

    Article  Google Scholar 

  88. Cheng M, Wang C, Li J. Sparse representation based pansharpening using trained dictionary. IEEE Geosci Remote Sens Lett, 2014, 11: 293–297

    Article  Google Scholar 

  89. Ghahremani M, Ghassemian H. Remote sensing image fusion using ripplet transform and compressed sensing. IEEE Geosci Remote Sens Lett, 2015, 12: 502–506

    Article  Google Scholar 

  90. Zhao C, Gao X, Emery W J, et al. An integrated spatio-spectral-temporal sparse representation method for fusing remote-sensing images with different resolutions. IEEE Trans Geosci Remote Sens, 2018, 56: 1–13

    Article  Google Scholar 

  91. Vargas E, Arguello H, Tourneret J Y. Spectral image fusion from compressive measurements using spectral unmixing and a sparse representation of abundance maps. IEEE Trans Geosci Remote Sens, 2019, 57: 5043–5053

    Article  Google Scholar 

  92. Romero A, Gatta C, Camps-Valls G. Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans Geosci Remote Sens, 2015, 54: 1–14

    Google Scholar 

  93. Tuia D, Flamary R, Courty N. Multiclass feature learning for hyperspectral image classification: sparse and hierarchical solutions. ISPRS J Photogrammetry Remote Sens, 2015, 105: 272–285

    Article  Google Scholar 

  94. Zhang H, Ni W, Yan W, et al. Registration of multimodal remote sensing image based on deep fully convolutional neural network. IEEE J Sel Top Appl Earth Observ Remote Sens, 2019, 12: 3028–3042

    Article  Google Scholar 

  95. Benedetti P, Ienco D, Gaetano R, et al. M3 Fusion: a deep learning architecture for multiscale multimodal multitemporal satellite data fusion. IEEE J Sel Top Appl Earth Observ Remote Sens, 2018, 11: 4939–4949

    Article  Google Scholar 

  96. Tuia D, Volpi M, Trolliet M, et al. Semisupervised manifold alignment of multimodal remote sensing images. IEEE Trans Geosci Remote Sens, 2014, 52: 7708–7720

    Article  Google Scholar 

  97. Matasci G, Volpi M, Kanevski M, et al. Semisupervised transfer component analysis for domain adaptation in remote sensing image classification. IEEE Trans Geosci Remote Sens, 2015, 53: 3550–3564

    Article  Google Scholar 

  98. Chi M, Sun Z, Qin Y, et al. A novel methodology to label urban remote sensing images based on location-based social media photos. Proc IEEE, 2017, 105: 1926–1936

    Article  Google Scholar 

  99. Li J, Benediktsson J A, Zhang B, et al. Spatial technology and social media in remote sensing: a survey. Proc IEEE, 2017, 105: 1855–1864

    Article  Google Scholar 

  100. Wang H, Skau E, Krim H, et al. Fusing heterogeneous data: a case for remote sensing and social media. IEEE Trans Geosci Remote Sens, 2018, 56: 6956–6968

    Article  Google Scholar 

  101. Qi L, Li J, Wang Y, et al. Urban observation: integration of remote sensing and social media data. IEEE J Sel Top Appl Earth Observ Remote Sens, 2019, 12: 4252–4264

    Article  Google Scholar 

  102. Singh A. Digital change detection techniques using remotely-sensed data. Int J Remote Sens, 1989, 10: 989–1003

    Article  Google Scholar 

  103. Heo J, Fitzhugh T W. A standardized radiometric normalization method for change detection using remotely sensed imagery. Photogramm Eng Remote Sens, 2000, 66: 173–181

    Google Scholar 

  104. Schowengerdt R A. Remote Sensing: Models and Methods for Image Processing. 2nd ed. New York: Academic, 1997

    Google Scholar 

  105. Gonzalez R, Woods R. Digital Image Processing. 2nd ed. Englewood Cliffs: Prentice-Hall, 2002

    Google Scholar 

  106. Inamdar S, Bovolo F, Bruzzone L, et al. Multidimensional probability density function matching for preprocessing of multitemporal remote sensing images. IEEE Trans Geosci Remote Sens, 2008, 46: 1243–1252

    Article  Google Scholar 

  107. Gorretta N, Hadoux X, Jay S. Multi-temporal hyperspectral data classification without explicit reflectance correction. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015. 4228–4231

  108. Hemissi S, Farah I R, Ettabaa K S, et al. A robust evidential fisher discriminant for multi-temporal hyperspectral images classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, 2012. 4275–4278

  109. Jin H, Li P, Fan W. Land cover classification using multitemporal CHRIS/PROBA images and multitemporal texture. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, 2008. 742–745

  110. Prasad S, Bruce L M, Kalluri H. A robust multi-classifier decision fusion framework for hyperspectral, multi-temporal classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, 2008, 273–276

  111. Tuia D, Persello C, Bruzzone L. Domain adaptation for the classification of remote sensing data: an overview of recent advances. IEEE Geosci Remote Sens Mag, 2016, 4: 41–57

    Article  Google Scholar 

  112. Ye M, Qian Y, Zhou J, et al. Dictionary learning-based feature-level domain adaptation for cross-scene hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2017, 55: 1544–1562

    Article  Google Scholar 

  113. Kim W, Crawford M M. Adaptive classification for hyperspectral image data using manifold regularization kernel machines. IEEE Trans Geosci Remote Sens, 2010, 48: 4110–4121

    Google Scholar 

  114. Yang H L, Crawford M M. Spectral and spatial proximity-based manifold alignment for multitemporal hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2016, 54: 51–64

    Article  Google Scholar 

  115. Yang H L, Crawford M M. Domain adaptation with preservation of manifold geometry for hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens, 2016, 9: 543–555

    Article  Google Scholar 

  116. Nielsen A A, Canty M J. Kernel principal component and maximum autocorrelation factor analyses for change detection. In: Proceedings of SPIE, Remote Sensing, Berlin, 2009. 7477: 74770T

  117. Nielsen A A. The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data. IEEE Trans Image Process, 2007, 16: 463–478

    Article  MathSciNet  Google Scholar 

  118. Xia J, Yokoya N, Iwasaki A. Ensemble of transfer component analysis for domain adaptation in hyperspectral remote sensing image classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, 2017. 4762–4765

  119. Samat A, Gamba P, Abuduwaili J, et al. Geodesic flow kernel support vector machine for hyperspectral image classification by unsupervised subspace feature transfer. Remote Sens, 2016, 8: 234

    Article  Google Scholar 

  120. Gao G, Gu Y. Tensorized principal component alignment: a unified framework for multimodal high-resolution images classification. IEEE Trans Geosci Remote Sens, 2018, 57: 46–61

    Article  Google Scholar 

  121. Li T, Gu Y. Joint tensor subspace alignment on multi-angular remote sensing image. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, 2018. 1–5

  122. Qin Y, Bruzzone L, Li B. Tensor alignment based domain adaptation for hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2019, 57: 9290–9307

    Article  Google Scholar 

  123. Persello C, Bruzzone L. Active learning for domain adaptation in the supervised classification of remote sensing images. IEEE Trans Geosci Remote Sens, 2012, 50: 4468–4483

    Article  Google Scholar 

  124. Banerjee B, Bovolo F, Bhattacharya A, et al. A novel graph-matching-based approach for domain adaptation in classification of remote sensing image pair. IEEE Trans Geosci Remote Sens, 2015, 53: 4045–4062

    Article  Google Scholar 

  125. Tuia D, Munoz-Mari J, Gomez-Chova L, et al. Graph matching for adaptation in remote sensing. IEEE Trans Geosci Remote Sens, 2013, 51: 329–341

    Article  Google Scholar 

  126. Jacobs J P, Thoonen G, Tuia D, et al. Domain adaptation with hidden Markov random fields. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, 2013. 3112–3115

  127. Ettabaa K S, Hamdi M A, Salem R B. SVM for hyperspectral images classification based on 3D spectral signature. In: Proceedings of International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, 2014. 42–47

  128. Hemissi S, Farah I R, Ettabaa K S, et al. Multi-spectro-temporal analysis of hyperspectral imagery based on 3-D spectral modeling and multilinear algebra. IEEE Trans Geosci Remote Sens, 2012, 51: 199–216

    Article  Google Scholar 

  129. Teke M, Yardimci Y. Classification of crops using multitemporal hyperion images. In: Proceedings of IEEE International Conference on Agro-Geoinformatics, Istanbul, 2015. 282–287

  130. Othman E, Bazi Y, Alajlan N, et al. Three-layer convex network for domain adaptation in multitemporal VHR images. IEEE Geosci Remote Sens Lett, 2016, 13: 354–358

    Google Scholar 

  131. Elshamli A, Taylor G W, Berg A, et al. Domain adaptation using representation learning for the classification of remote sensing images. IEEE J Sel Top Appl Earth Observ Remote Sens, 2017, 99: 1–12

    Google Scholar 

  132. Yang J, Zhao Y Q, Chan J C W. Learning and transferring deep joint spectral-spatial features for hyperspectral classification. IEEE Trans Geosci Remote Sens, 2017, 55: 4729–4742

    Article  Google Scholar 

  133. Hong D, Yokoya N, Ge N, et al. Learnable manifold alignment (LeMA): a semi-supervised cross-modality learning framework for land cover and land use classification. ISPRS J Photogrammetry Remote Sens, 2019, 147: 193–205

    Article  Google Scholar 

  134. Tuia D, Campsvalls G. Kernel manifold alignment for domain adaptation. Plos One, 2016, 11: e0148655

    Article  Google Scholar 

  135. Li X, Zhang L, Du B, et al. On gleaning knowledge from cross domains by sparse subspace correlation analysis for hyper-spectral image classification. IEEE Trans Geosci Remote Sens, 2019, 57: 3204–3220

    Article  Google Scholar 

  136. Qin Y, Bruzzone L, Li B, et al. Cross-domain collaborative learning via cluster canonical correlation analysis and random walker for hyperspectral image classification. IEEE Trans Geosci Remote Sens, 2019, 57: 3952–3966

    Article  Google Scholar 

  137. Hong D, Yokoya N, Chanussot J, et al. Cospace: common subspace learning from hyperspectral-multispectral correspondences. IEEE Trans Geosci Remote Sens, 2019, 57: 4349–4359

    Article  Google Scholar 

  138. Liu T, Zhang X, Gu Y. Unsupervised cross-temporal classification of hyperspectral images with multiple geodesic flow kernel learning. IEEE Trans Geosci Remote Sens, 2019, 57: 9688–9701

    Article  Google Scholar 

  139. Gong B, Shi Y, Sha F, et al. Geodesic flow kernel for unsupervised domain adaptation. In: Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, 2012. 2066–2073

  140. Liu S, Bruzzone L, Bovolo F, et al. Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images. IEEE Trans Geosci Remote Sens, 2015, 53: 4363–4378

    Article  Google Scholar 

  141. Liu S, Bruzzone L, Bovolo F, et al. Unsupervised multitemporal spectral unmixing for detecting multiple changes in hyper-spectral images. IEEE Trans Geosci Remote Sens, 2016, 54: 2733–2748

    Article  Google Scholar 

  142. Cesmeci D, Karaca A C, Erturk A, et al. Hyperspectral change detection by multi-band census transform. In: Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec, 2014. 2969–2972

  143. Wu C, Zhang L, Du B. Hyperspectral anomaly change detection with slow feature analysis. Neurocomputing, 2015, 151: 175–187

    Article  Google Scholar 

  144. Du B, Ru L, Wu C, et al. Unsupervised deep slow feature analysis for change detection in multi-temporal remote sensing images. IEEE Trans Geosci Remote Sens, 2019, 57: 9976–9992

    Article  Google Scholar 

  145. Yuan Y, Lv H, Lu X. Semi-supervised change detection method for multi-temporal hyperspectral images. Neurocomputing, 2015, 148: 363–375

    Article  Google Scholar 

  146. Wu C, Zhang L, Du B. Targeted change detection for stacked multi-temporal hyperspectral image. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Shanghai, 2012. 1–4

  147. Hazel G G. Object-level change detection in spectral imagery. IEEE Trans Geosci Remote Sens, 2001, 39: 553–561

    Article  Google Scholar 

  148. Messinger D W, Richardson M, Casey J. Analysis of a multitemporal hyperspectral dataset over a common target scene. In: Proceedings of SPIE, Defense and Security Symposium, Orlando, 2006. 6233: 62331I

  149. Sun Y, Zhang X, Shuai T, et al. Radiometric normalization of multitemporal hyperspectral satellite images. In: Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS), Quebec, 2014. 4204–4207

  150. Halimi A, Dobigeon N, Toumeret J Y, et al. Unmixing multitemporal hyperspectral images accounting for endmember variability. In: Proceedings of IEEE European Signal Processing Conference (EUSIPCO), Nice, 2015. 1656–1660

  151. Thouvenin P A, Dobigeon N, Tourneret J Y. A hierarchical Bayesian model accounting for endmember variability and abrupt spectral changes to unmix multitemporal hyperspectral images. IEEE Trans Comput Imaging, 2017, 4: 32–45

    Article  MathSciNet  Google Scholar 

  152. Thouvenin P A, Dobigeon N, Tourneret J Y. Unmixing multitemporal hyperspectral images with variability: an online algorithm. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, 2016. 3351–3355

  153. Thouvenin P A, Dobigeon N, Tourneret J Y. Online unmixing of multitemporal hyperspectral images accounting for spectral variability. IEEE Trans Image Process, 2016, 25: 3979–3990

    Article  MathSciNet  MATH  Google Scholar 

  154. Henrot S, Chanussot J, Jutten C. Dynamical spectral unmixing of multitemporal hyperspectral images. IEEE Trans Image Process, 2016, 25: 3219–3232

    Article  MathSciNet  MATH  Google Scholar 

  155. Licciardi G A, Frate F D. Pixel unmixing in hyperspectral data by means of neural networks. IEEE Trans Geosci Remote Sens, 2011, 49: 4163–4172

    Article  Google Scholar 

  156. Erturk A, Plaza A. Informative change detection by unmixing for hyperspectral images. IEEE Geosci Remote Sens Lett, 2015, 12: 1252–1256

    Article  Google Scholar 

  157. Liu S, Bruzzone L, Bovolo F, et al. Multitemporal spectral unmixing for change detection in hyperspectral images. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015. 4165–4168

  158. Erturk A, Iordache M D, Plaza A. Sparse unmixing-based change detection for multitemporal hyperspectral images. IEEE J Sel Top Appl Earth Observ Remote Sens, 2015, 9: 708–719

    Article  Google Scholar 

  159. Erturk A, Iordache M D, Plaza A. Sparse unmixing with dictionary pruning for hyperspectral change detection. IEEE J Sel Top Appl Earth Observ Remote Sens, 2016, 10: 321–330

    Article  Google Scholar 

  160. Torres-Madronero M C, Velez-Reyes M, van Bloem S J, et al. Multi-temporal unmixing analysis of Hyperion images over the Guanica Dry Forest. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lisbon, 2011. 1–4

  161. Cerra D, Muller R, Reinartz P. Cloud removal in image time series through unmixing. In: Proceedings of International Workshop on the Analysis of Multitemporal Remote Sensing Images, Annecy, 2015. 1–4

  162. Dombrowski M, Bajaj J, Willson P. Video-rate visible to LWIR hyperspectral imaging and image exploitation. In: Proceedings of IEEE Applied Imagery Pattern Recognition Workshop, Washington, 2002. 178–185

  163. Arnold T, de Biasio M, Leitner R. Hyperspectral video endoscope for intra-surgery tissue classification using auto-fluorescence and reflectance spectroscopy. In: Proceedings of SPIE, European Conference on Biomedical Optics, Munich, 2011. 8087: 808711

  164. Banerjee A, Burlina P, Broadwater J. Hyperspectral video for illumination-invariant tracking. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Grenoble, 2009. 1–4

  165. van Nguyen H, Banerjee A, Chellappa R. Tracking via object reflectance using a hyperspectral video camera. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, San Francisco, 2010. 44–51

  166. Bodkin A, Sheinis A, Norton A, et al. Video-rate chemical identification and visualization with snapshot hyperspectral imaging. In: Proceedings of SPIE Defense, Security, and Sensing, Baltimore, 2012. 8374: 83740C

  167. Merkurjev E, Sunu J, Bertozzi A L. Graph MBO method for multiclass segmentation of hyperspectral stand-off detection video. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Paris, 2014. 689–693

  168. Hu H, Sunu J, Bertozzi A L. Multi-class graph Mumford-Shah model for plume detection using the MBO scheme. In: Proceedings of International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, Hongkong, 2015. 209–222

  169. Tochon G, Pauwels D, Dalla M M, et al. Unmixing-based gas plume tracking in LWIR hyperspectral video sequences. In: Proceedings of IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Los Angeles, 2016. 1–5

  170. Xu Y, Wu Z, Wei Z, et al. GAS plume detection in hyperspectral video sequence using low rank representation. In: Proceedings of IEEE International Conference on Image Processing (ICIP), Phoenix, 2016. 2221–2225

  171. Xu Y, Wu Z, Chanussot J, et al. Low-rank decomposition and total variation regularization of hyperspectral video sequences. IEEE Trans Geosci Remote Sens, 2018, 56: 1680–1694

    Article  Google Scholar 

  172. Yu H, Wu Z, Wei J, et al. GPU parallel implementation of gas plume detection in hyperspectral video sequences. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, 2018. 2781–2784

  173. Tochon G, Chanussot J, Dalla M M, et al. Object tracking by hierarchical decomposition of hyperspectral video sequences: application to chemical gas plume tracking. IEEE Trans Geosci Remote Sens, 2017, 55: 4567–4585

    Article  Google Scholar 

  174. Tan S, Liu H, Gu Y, et al. Sequential tensor decomposition for Gas tracking in Lwir hyperspectral video sequences. In: Proceedings of IEEE Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, 2019. 1–5

  175. Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Rev Mod Phys, 2006, 78: 1135–1184

    Article  Google Scholar 

  176. Hakala T, Suomalainen J, Kaasalainen S, et al. Full waveform hyperspectral LiDAR for terrestrial laser scanning. Opt Express, 2012, 20: 7119–7127

    Article  Google Scholar 

  177. Hernandez-Marin S, Wallace A M, Gibson G J. Bayesian analysis of lidar signals with multiple returns. IEEE Trans Pattern Anal Mach Intell, 2007, 29: 2170–2180

    Article  Google Scholar 

  178. Suomalainen J, Hakala T, Kaartinen H, et al. Demonstration of a virtual active hyperspectral LiDAR in automated point cloud classification. ISPRS J Photogrammetry Remote Sens, 2011, 66: 637–641

    Article  Google Scholar 

  179. Woodhouse I H, Nichol C, Sinclair P, et al. A multispectral canopy LiDAR demonstrator project. IEEE Geosci Remote Sens Lett, 2011, 8: 839–843

    Article  Google Scholar 

  180. Wallace A M, McCarthy A, Nichol C J, et al. Design and evaluation of multispectral lidar for the recovery of arboreal parameters. IEEE Trans Geosci Remote Sens, 2013, 52: 4942–4954

    Article  Google Scholar 

  181. Wei G, Shalei S, Bo Z, et al. Multi-wavelength canopy LiDAR for remote sensing of vegetation: Design and system performance. ISPRS J Photogramm Remote Sens, 2012, 69: 1–9

    Article  Google Scholar 

  182. Wichmann V, Bremer M, Lindenberger J, et al. Evaluating the potential of multispectral airborne lidar for topographic mapping and land cover classification. ISPRS Ann Photogramm Remot Sens Spatial Inf Sci, 2015, 2: 113–119

    Article  Google Scholar 

  183. Shi S, Song S, Gong W, et al. Improving backscatter intensity calibration for multispectral LiDAR. IEEE Geosci Remote Sens Lett, 2015, 12: 1421–1425

    Article  Google Scholar 

  184. Gu Y F, Jin X D, Xiang R Z, et al. UAV-based integrated multispectral-LiDAR imaging system and data processing. Sci China Technol Sci, 2020, 63: 1293–1301

    Article  Google Scholar 

  185. Pedergnana M, Marpu P R, Dalla M M, et al. Classification of remote sensing optical and LiDAR data using extended attribute profiles. IEEE J Sel Top Appl Earth Observ Remote Sens, 2012, 6: 856–865

    Google Scholar 

  186. Ghamisi P, Benediktsson J A, Phinn S. Land-cover classification using both hyperspectral and LiDAR data. Int J Image Data Fusion, 2015, 6: 189–215

    Article  Google Scholar 

  187. Pedergnana M, Marpu P R, Dalla M M, et al. A novel technique for optimal feature selection in attribute profiles based on genetic algorithms. IEEE Trans Geosci Remote Sens, 2013, 51: 3514–3528

    Article  Google Scholar 

  188. Ghamisi P, Hofle B, Zhu X X. Hyperspectral and LiDAR data fusion using extinction profiles and deep convolutional neural network. IEEE J Sel Top Appl Earth Observ Remote Sens, 2017, 10: 3011–3024

    Article  Google Scholar 

  189. Rasti B, Ghamisi P, Gloaguen R. Hyperspectral and LiDAR fusion using extinction profiles and total variation component analysis. IEEE Trans Geosci Remote Sens, 2017, 55: 3997–4007

    Article  Google Scholar 

  190. Rasti B, Ghamisi P, Plaza J, et al. Fusion of hyperspectral and LiDAR data using sparse and low-rank component analysis. IEEE Trans Geosci Remote Sens, 2017, 55: 6354–6365

    Article  Google Scholar 

  191. Khodadadzadeh M, Li J, Prasad S, et al. Fusion of hyperspectral and LiDAR remote sensing data using multiple feature learning. IEEE J Sel Top Appl Earth Observ Remote Sens, 2015, 8: 2971–2983

    Article  Google Scholar 

  192. Liao W Z, Pizurica A, Bellens R, et al. Generalized graph-based fusion of hyperspectral and LiDAR data using morphological features. IEEE Geosci Remote Sens Lett, 2015, 12: 552–556

    Article  Google Scholar 

  193. Liao W, Xia J, Du P, et al. Semi-supervised graph fusion of hyperspectral and LiDAR data for classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, 2015. 53–56

  194. Liao W, Huang X, van Coillie F, et al. Processing of multiresolution thermal hyperspectral and digital color data: outcome of the 2014 IEEE GRSS data fusion contest. IEEE J Sel Top Appl Earth Observ Remote Sens, 2015, 8: 2984–2996

    Article  Google Scholar 

  195. Xia J, Liao W, Du P. Hyperspectral and LiDAR classification with semisupervised graph fusion. IEEE Geosci Remote Sens Lett, 2020, 17: 666–670

    Article  Google Scholar 

  196. Chen Y, Li C, Ghamisi P, et al. Deep fusion of remote sensing data for accurate classification. IEEE Geosci Remote Sens Lett, 2017, 14: 1253–1257

    Article  Google Scholar 

  197. Li H, Ghamisi P, Soergel U, et al. Hyperspectral and LiDAR fusion using deep three-stream convolutional neural networks. Remote Sens, 2018, 10: 1649

    Article  Google Scholar 

  198. Zhang M, Li W, Du Q, et al. Feature extraction for classification of hyperspectral and LiDAR data using patch-to-patch CNN. IEEE Trans Cybern, 2020, 50: 100–111

    Article  Google Scholar 

  199. Nen M, Alpayd E N. Multiple kernel learning algorithms. J Mach Learn Res, 2011, 12: 2211–2268

    MathSciNet  Google Scholar 

  200. Zhang M, Ghamisi P, Li W. Classification of hyperspectral and LIDAR data using extinction profiles with feature fusion. Remote Sens Lett, 2017, 8: 957–966

    Article  Google Scholar 

  201. Zhang Y, Yang H L, Prasad S, et al. Ensemble multiple kernel active learning for classification of multisource remote sensing data. IEEE J Sel Top Appl Earth Observ Remote Sens, 2015, 8: 845–858

    Article  Google Scholar 

  202. Hartzell P, Glennie C, Biber K, et al. Application of multispectral LiDAR to automated virtual outcrop geology. ISPRS J Photogrammetry Remote Sens, 2014, 88: 147–155

    Article  Google Scholar 

  203. Niu Z, Xu Z G, Sun G, et al. Design of a new multispectral waveform LiDAR instrument to monitor vegetation. IEEE Geosci Remote Sens Lett, 2015, 12: 1506–1510

    Article  Google Scholar 

  204. Du L, Shi S, Gong W, et al. Wavelength selection of hyperspectral LiDAR based on feature weighting for estimation of leaf nitrogen content in rice. In: Proceedings of XXIII ISPRS Congress, Prague, 2016. 9–13

  205. Du L, Shi S, Yang J, et al. Using different regression methods to estimate leaf nitrogen content in rice by fusing hyperspectral LiDAR data and laser-induced chlorophyll fluorescence data. Remote Sens, 2016, 8: 526

    Article  Google Scholar 

  206. Du L, Gong W, Shi S, et al. Estimation of rice leaf nitrogen contents based on hyperspectral LIDAR. Int J Appl Earth Observation Geoinf, 2016, 44: 136–143

    Article  Google Scholar 

  207. Junttila S, Kaasalainen S, Vastaranta M, et al. Investigating bi-temporal hyperspectral lidar measurements from declined trees-experiences from laboratory test. Remote Sens, 2015, 7: 13863–13877

    Article  Google Scholar 

  208. Nevalainen O, Hakala T, Suomalainen J, et al. Fast and nondestructive method for leaf level chlorophyll estimation using hyperspectral LiDAR. Agr Forest Meteorol, 2014, 198: 250–258

    Article  Google Scholar 

  209. Hakala T, Nevalainen O, Kaasalainen S, et al. Technical note: multispectral lidar time series of pine canopy chlorophyll content. Biogeosciences, 2015, 12: 1629–1634

    Article  Google Scholar 

  210. Chen B, Shi S, Gong W, et al. Multispectral LiDAR point cloud classification: a two-step approach. Remote Sens, 2017, 9: 373

    Article  Google Scholar 

  211. Puttonen E, Hakala T, Nevalainen O, et al. Artificial target detection with a hyperspectral LiDAR over 26-h measurement. Opt Eng, 2015, 54: 013105

    Article  Google Scholar 

  212. Matikainen L, Karila K, Hyyppä J, et al. Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating. ISPRS J Photogrammetry Remote Sens, 2017, 128: 298–313

    Article  Google Scholar 

  213. Fernandez-Diaz J, Carter W, Glennie C, et al. Capability assessment and performance metrics for the Titan multispectral mapping lidar. Remote Sens, 2016, 8: 936

    Article  Google Scholar 

  214. Bakula K, Kupidura P, Jelowicki L. Testing of land cover classification from multispectral airborne laser scanning data. In: Proceedings of XXIII ISPRS Congress, Prague, 2016. 161–169

  215. Wang C K, Tseng Y H, Chu H J. Airborne dual-wavelength LiDAR data for classifying land cover. Remote Sens, 2014, 6: 700–715

    Article  Google Scholar 

  216. Teo T, Wu H. Analysis of land cover classification using multiwavelength LiDAR system. Appl Sci, 2017, 7: 1–20

    Article  Google Scholar 

  217. Leigh H W, Magruder L A. Using dual-wavelength, full-waveform airborne lidar for surface classification and vegetation characterization. J Appl Remote Sens, 2016, 10: 045001

    Article  Google Scholar 

  218. Zou X, Zhao G, Li J, et al. 3D land cover classification based on multispectral lidar point clouds. In: Proceedings of XXIII ISPRS Congress, Prague, 2016. 741–747

  219. Sun J, Shi S, Chen B, et al. Combined application of 3D spectral features from multispectral LiDAR for classification. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, 2017. 5264–5267

  220. Ekhtari N, Glennie C, Fernandez-Diaz J C. Classification of multispectral lidar point clouds. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, 2017. 2756–2759

  221. Ekhtari N, Glennie C, Fernandez-Diaz J C, et al. Classification of airborne multispectral lidar point clouds for land cover mapping. IEEE J Sel Top Appl Earth Observ Remote Sens, 2018, 11: 2068–2078

    Article  Google Scholar 

  222. Miller C I, Thomas J J, Kim J P, et al. Application of image classification techniques to multispectral lidar point cloud data. In: Proceedings of SPIE Defense + Security, Baltimore, 2016. 9832: 98320X

  223. Morsy S, Shaker A, El-Rabbany A. Multispectral LiDAR data for land cover classification of urban areas. Sensors, 2017, 17: 958

    Article  Google Scholar 

  224. Wang Q, Gu Y. A discriminative tensor representation model for feature extraction and classification of multispectral LiDAR data. IEEE Trans Geosci Remote Sens, 2020, 58: 1568–1586

    Article  MathSciNet  Google Scholar 

  225. Li H, Jiang T, Zhang K. Efficient and robust feature extraction by maximum margin criterion. IEEE Trans Neural Netw, 2006, 17: 157–165

    Article  Google Scholar 

  226. Liu Y, Gao G, Gu Y. Tensor matched subspace detector for hyperspectral target detection. IEEE Trans Geosci Remote Sens, 2016, 55: 1967–1974

    Article  Google Scholar 

  227. Veganzones M A, Cohen J E, Farias R C, et al. Nonnegative tensor CP decomposition of hyperspectral data. IEEE Trans Geosci Remote Sens, 2016, 54: 2577–2588

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of Key International Cooperation of China (Grant No. 61720106002) and National Key R&D Program of China (Grant No. 2017YFC1405100). The authors would like to thank Beijing Anzhou Technology Co. LTD for providing the HSV data shown in Figure 7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianzhu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Liu, T., Gao, G. et al. Multimodal hyperspectral remote sensing: an overview and perspective. Sci. China Inf. Sci. 64, 121301 (2021). https://doi.org/10.1007/s11432-020-3084-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3084-1

Keywords

Navigation