Skip to main content
Log in

Modeling and adaptive control for a spatial flexible spacecraft with unknown actuator failures

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we address simultaneous control of a flexible spacecraft’s attitude and vibrations in a three-dimensional space under input disturbances and unknown actuator failures. Using Hamilton’s principle, the system dynamics is modeled as an infinite dimensional system captured using partial differential equations. Moreover, a novel adaptive fault tolerant control strategy is developed to suppress the vibrations of the flexible panel in the course of the attitude stabilization. To determine whether the system energies, angular velocities and transverse deflections, remain bounded and asymptotically decay to zero in the case wherein the number of actuator failures is infinite, a Lyapunov-based stability analysis is conducted. Finally, extensive numerical simulations are performed to demonstrate the performance of the proposed adaptive control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gennaro S D. Output stabilization of flexible spacecraft with active vibration suppression. IEEE Trans Aerosp Electron Syst, 2003, 39: 747–759

    Article  Google Scholar 

  2. Hu Q L, Ma G F. Variable structure control and active vibration suppression of flexible spacecraft during attitude maneuver. Aerospace Sci Tech, 2005, 9: 307–317

    Article  MATH  Google Scholar 

  3. Hu Q. Adaptive output feedback sliding-mode manoeuvring and vibration control of flexible spacecraft with input saturation. IET Control Theory Appl, 2008, 2: 467–478

    Article  MathSciNet  Google Scholar 

  4. Liu H, Guo L, Zhang Y M. An anti-disturbance PD control scheme for attitude control and stabilization of flexible spacecrafts. Nonlinear Dyn, 2012, 67: 2081–2088

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen T, Wen H, Wei Z T. Distributed attitude tracking for multiple flexible spacecraft described by partial differential equations. Acta Astronaut, 2019, 159: 637–645

    Article  Google Scholar 

  6. He W, Ge S S. Dynamic modeling and vibration control of a flexible satellite. IEEE Trans Aerosp Electron Syst, 2015, 51: 1422–1431

    Article  Google Scholar 

  7. Ji N, Liu J K. Vibration control for a flexible satellite with input constraint based on Nussbaum function via backstepping method. Aerospace Sci Tech, 2018, 77: 563–572

    Article  Google Scholar 

  8. Feng S, Wu H N. Hybrid robust boundary and fuzzy control for disturbance attenuation of nonlinear coupled ODE-beam systems with application to a flexible spacecraft. IEEE Trans Fuzzy Syst, 2017, 25: 1293–1305

    Article  Google Scholar 

  9. Liu Y, Fu Y, He W, et al. Modeling and observer-based vibration control of a flexible spacecraft with external disturbances. IEEE Trans Ind Electron, 2019, 66: 8648–8658

    Article  Google Scholar 

  10. Wang J W, Liu Y Q, Sun C Y. Observer-based dynamic local piecewise control of a linear parabolic PDE using non-collocated local piecewise observation. IET Control Theory Appl, 2018, 12: 346–358

    Article  MathSciNet  Google Scholar 

  11. Wang J, Krstic M. Output feedback boundary control of a heat PDE sandwiched between two ODEs. IEEE Trans Autom Control, 2019, 64: 4653–4660

    Article  MathSciNet  MATH  Google Scholar 

  12. He W, Meng T T, He X Y, et al. Iterative learning control for a flapping wing micro aerial vehicle under distributed disturbances. IEEE Trans Cybern, 2019, 49: 1524–1535

    Article  Google Scholar 

  13. Zhao Z J, He X Y, Ren Z G, et al. Boundary adaptive robust control of a flexible riser system with input nonlinearities. IEEE Trans Syst Man Cybern Syst, 2019, 49: 1971–1980

    Article  Google Scholar 

  14. Zhao Z J, Ahn C K, Li H X. Dead zone compensation and adaptive vibration control of uncertain spatial flexible riser systems. IEEE/ASME Trans Mechatron, 2020, 25: 1398–1408

    Article  Google Scholar 

  15. Ren Y, Chen M, Liu J Y. Bilateral coordinate boundary adaptive control for a helicopter lifting system with backlash-like hysteresis. Sci China Inf Sci, 2020, 63: 119203

    Article  MathSciNet  Google Scholar 

  16. Zhao Z J, Ahn C K, Li H X. Boundary antidisturbance control of a spatially nonlinear flexible string system. IEEE Trans Ind Electron, 2020, 67: 4846–4856

    Article  Google Scholar 

  17. Liu Z J, Zhao Z J, Ahn C K. Boundary constrained control of flexible string systems subject to disturbances. IEEE Trans Circ Syst II, 2020, 67: 112–116

    Google Scholar 

  18. He W, Ge S S, Huang D Q. Modeling and vibration control for a nonlinear moving string with output constraint. IEEE/ASME Trans Mechatron, 2015, 20: 1886–1897

    Article  Google Scholar 

  19. Do K D, Pan J. Boundary control of three-dimensional inextensible marine risers. J Sound Vib, 2009, 327: 299–321

    Article  Google Scholar 

  20. Do K D, Lucey A D. Stochastic stabilization of slender beams in space: modeling and boundary control. Automatica, 2018, 91: 279–293

    Article  MathSciNet  MATH  Google Scholar 

  21. Tao G, Chen S, Joshi S M. An adaptive actuator failure compensation controller using output feedback. IEEE Trans Autom Control, 2002, 47: 506–511

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang W, Wen C Y. Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance. Automatica, 2010, 46: 2082–2091

    Article  MathSciNet  MATH  Google Scholar 

  23. Cai J P, Wen C Y, Su H Y, et al. Robust adaptive failure compensation of hysteretic actuators for a class of uncertain nonlinear systems. IEEE Trans Autom Control, 2013, 58: 2388–2394

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang W, Wen C Y. Adaptive compensation for infinite number of actuator failures or faults. Automatica, 2011, 47: 2197–2210

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang C L, Wen C Y, Lin Y. Adaptive actuator failure compensation for a class of nonlinear systems with unknown control direction. IEEE Trans Autom Control, 2017, 62: 385–392

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin H W, Zhao B, Liu D R, et al. Data-based fault tolerant control for affine nonlinear systems through particle swarm optimized neural networks. IEEE/CAA J Autom Sin, 2020, 7: 954–964

    Article  MathSciNet  Google Scholar 

  27. Xiao B, Hu Q L, Shi P. Attitude stabilization of spacecrafts under actuator saturation and partial loss of control effectiveness. IEEE Trans Contr Syst Technol, 2013, 21: 2251–2263

    Article  Google Scholar 

  28. Zhang A H, Hu Q L, Zhang Y M. Observer-based attitude control for satellite under actuator fault. J Guid Control Dyn, 2015, 38: 806–811

    Article  Google Scholar 

  29. Ma Y J, Jiang B, Tao G, et al. Uncertainty decomposition-based fault-tolerant adaptive control of flexible spacecraft. IEEE Trans Aerosp Electron Syst, 2015, 51: 1053–1068

    Article  Google Scholar 

  30. Sun G H, Xu S D, Li Z. Finite-time fuzzy sampled-data control for nonlinear flexible spacecraft with stochastic actuator failures. IEEE Trans Ind Electron, 2017, 64: 3851–3861

    Article  Google Scholar 

  31. Hu Q L, Xiao B. Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness. Nonlinear Dyn, 2011, 64: 13–23

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu Z J, Liu J K, He W. Robust adaptive fault tolerant control for a linear cascaded ODE-beam system. Automatica, 2018, 98: 42–50

    Article  MathSciNet  MATH  Google Scholar 

  33. Xing X Y, Liu J K. PDE modelling and vibration control of overhead crane bridge with unknown control directions and parametric uncertainties. IET Control Theory Appl, 2020, 14: 116–126

    Article  MathSciNet  Google Scholar 

  34. Krstic M, Smyshlyaev A. Adaptive control of PDEs. Annu Rev Control, 2008, 32: 149–160

    Article  MATH  Google Scholar 

  35. Krstic M, Smyshlyaev A. Adaptive boundary control for unstable parabolic PDEs-part I: Lyapunov design. IEEE Trans Autom Control, 2008, 53: 1575–1591

    Article  MATH  Google Scholar 

  36. Roman C, Bresch-Pietri D, Prieur C, et al. Robustness to in-domain viscous damping of a collocated boundary adaptive feedback law for an antidamped boundary wave PDE. IEEE Trans Autom Control, 2019, 64: 3284–3299

    Article  MathSciNet  MATH  Google Scholar 

  37. Anfinsen H, Aamo O M. Adaptive control of linear 2×2 hyperbolic systems. Automatica, 2018, 87: 69–82

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang J, Tang S X, Krstic M. Adaptive output-feedback control of torsional vibration in off-shore rotary oil drilling systems. Automatica, 2020, 111: 108640

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang J, Tang S X, Pi Y J, et al. Exponential regulation of the anti-collocatedly disturbed cage in a wave PDE-modeled ascending cable elevator. Automatica, 2018, 95: 122–136

    Article  MathSciNet  MATH  Google Scholar 

  40. de Queiroz M S, Dawson D M, Nagarkatti S P, et al. Lyapunov-Based Control of Mechanical Systems. New York: Springer Science + Business Media, 2012

    MATH  Google Scholar 

  41. Bialy B J, Chakraborty I, Cekic S C, et al. Adaptive boundary control of store induced oscillations in a flexible aircraft wing. Automatica, 2016, 70: 230–238

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang C L, Wen C Y, Lin Y. Decentralized adaptive backstepping control for a class of interconnected nonlinear systems with unknown actuator failures. J Franklin Inst, 2015, 352: 835–850

    Article  MathSciNet  MATH  Google Scholar 

  43. Ji N, Liu J K. Adaptive actuator fault-tolerant control for a three-dimensional Euler-Bernoulli beam with output constraints and uncertain end load. J Franklin Inst, 2019, 356: 3869–3898

    Article  MathSciNet  MATH  Google Scholar 

  44. Rahn C D. Mechatronic Control of Distributed Noise and Vibration. Berlin: Springer, 2001

  45. Xiao B, Hu Q L, Zhang Y M. Fault-tolerant attitude control for flexible spacecraft without angular velocity magnitude measurement. J Guid Control Dyn, 2011, 34: 1556–1561

    Article  Google Scholar 

  46. Xie G, Shangguan A Q, Fei R, et al. Motion trajectory prediction based on a CNN-LSTM sequential model. Sci China Inf Sci, 2020, 63: 212207

    Article  Google Scholar 

  47. Liu L, Liu Y J, Li D P, et al. Barrier Lyapunov function-based adaptive fuzzy FTC for switched systems and its applications to resistance-inductance-capacitance circuit system. IEEE Trans Cybern, 2020, 50: 3491–3502

    Article  Google Scholar 

  48. Zhou T L, Chen M, Yang C G, et al. Data fusion using Bayesian theory and reinforcement learning method. Sci China Inf Sci, 2020, 63: 170209

    Article  Google Scholar 

  49. Yu X B, He W, Li Y N, et al. Adaptive NN impedance control for an SEA-driven robot. Sci China Inf Sci, 2020, 63: 159207

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 62073030), Interdisciplinary Research Project for Young Teachers of USTB (Grant No. FRF-IDRY-19-024), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515110728), Postdoctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing (Grant No. 2020BH002), and Beijing Top Discipline for Artificial Intelligent Science and Engineering, University of Science and Technology Beijing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Han, Z., Zhao, Z. et al. Modeling and adaptive control for a spatial flexible spacecraft with unknown actuator failures. Sci. China Inf. Sci. 64, 152208 (2021). https://doi.org/10.1007/s11432-020-3109-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3109-x

Keywords

Navigation